如图甲,在平面直角坐标系中,A、B的坐标分别为(4,0)、(0,3),抛物线y=x2+bx+c经过点B,且对称轴是直线x=﹣
.
(1)求抛物线对应的函数解析式;
(2)将图甲中△ABO沿x轴向左平移到△DCE(如图乙),当四边形ABCD是菱形时,请说明点C和点D都在该抛物线上.
(3)在(2)中,若点M是抛物线上的一个动点(点M不与点C、D重合),经过点M作MN∥y轴交直线CD于N,设点M的横坐标为t,MN的长度为l,求l与t之间的函数解析式,并求当t为何值时,以M、N、C、E为顶点的四边形是平行四边形.(参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(﹣,
),对称轴是直线x=﹣
.)
如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:
(1)作出△ABC向左平移5格后得到的△A1B1C1;
(2)作出△ABC关于点O的中心对称图形△A2B2C2;
(3)求△A1B1C1的面积.
作图题:在方格纸中,将△ABC向右平移3个单位得到△A1B1C1,画出△A1B1C1.
如图,方格纸中每个小正方形的边长都是单位1,△ABC在平面直角坐标系中的位置如图所示.
(1)将△ABC向右平移4个单位后,得到△A1B1C1,请画出△A1B1C1,并直接写出点C1的坐标.
(2)作出△A1B1C1关于x轴的对称图形△A2B2C2,并直接写出点A2的坐标.
(3)请由图形直接判断以点C1、C2、B2、B1为顶点的四边形是什么四边形?并求出它的面积.
在平面直角坐标系中,△ABC的位置如图所示,请解答下列问题:
(1)将△ABC向下平移3个单位长度,得到△A1B1C1,画出平移后的△A1B1C1;
(2)将△ABC绕点O顺时针方向旋转180°,得到△A2B2C2,画出旋转后的△A2B2C2,并写出A2点的坐标.
顶点在网格交点的多边形叫做格点多边形,如图,在一个9×9的正方形网格中有一个格点△ABC.设网格中小正方形的边长为1个单位长度.
(1)在网格中画出△ABC向上平移4个单位后得到的△A1B1C1;
(2)在网格中画出△ABC绕点A逆时针旋转90°后得到的△AB2C2;
(3)在(1)中△ABC向上平移过程中,求边AC所扫过区域的面积.