游客
题文

如图甲,在平面直角坐标系中,A、B的坐标分别为(4,0)、(0,3),抛物线y=x2+bx+c经过点B,且对称轴是直线x=﹣
(1)求抛物线对应的函数解析式;
(2)将图甲中△ABO沿x轴向左平移到△DCE(如图乙),当四边形ABCD是菱形时,请说明点C和点D都在该抛物线上.
(3)在(2)中,若点M是抛物线上的一个动点(点M不与点C、D重合),经过点M作MN∥y轴交直线CD于N,设点M的横坐标为t,MN的长度为l,求l与t之间的函数解析式,并求当t为何值时,以M、N、C、E为顶点的四边形是平行四边形.(参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(﹣),对称轴是直线x=﹣.)

科目 数学   题型 解答题   难度 较难
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

计算:

计算:

计算:

计算:

有20箱橘子,以每箱25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:

与标准质量的差值
(单位:千克)
3
2
1.5
0
1
2.5
箱数
1
4
2
3
2
8

(1)20箱橘子中,最重的一箱比最轻的一箱多重多少千克?
(2)与标准重量比较,20箱橘子总计超过或不足多少千克?
(3)若橘子每千克售价2.6元,则出售这20箱橘子可卖多少元?(结果保留整数)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号