游客
题文

为方便市民出行,减轻城市中心交通压力,乌鲁木齐市正在修建贯穿南北、东西的地铁1、2号线.已知修建地铁1号线27千米和2号线21千米共需投资315亿元;若1号线每千米的平均造价比2号线每千米的平均造价多1亿元.
(1)求1号线,2号线每千米的平均造价分别是多少亿元?
(2)除1、2号线外,乌鲁木齐市政府规划到2018年还要再建92千米的地铁线网.
据预算,这92千米地铁线网每千米的平均造价是1号线每千米的平均造价的1.2倍.则还需投资多少亿元.

科目 数学   题型 解答题   难度 中等
知识点: 二元一次不定方程的应用
登录免费查看答案和解析
相关试题

已知关于x的一元二次方程
(1)若此方程有两个不相等的实数根,求实数k的取值范围;
(2)已知x=3是此方程的一个根,求方程的另一个根及k的值;

解方程
(1)x(x+2)=5x+10
(2)3x2-6x+1=0

(本题12分)如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标(3,3),将正方形ABCO绕点A顺时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段OC于点G,ED的延长线交线段BC于点P,连AP、AG.

(1)求证:△AOG≌△ADG;
(2)求∠PAG的度数,并判断线段OG、PG、BP之间的数量关系,并说明理由;
(3)当∠1=∠2时,求直线PE的解析式.

(本题10分)已知,点I是△ABC的内心(三角形三个内角平分线的交点),过点B作BP⊥BI交AI的延长线于点P.

(1)如图1,若BA=BC,
①求证:BP∥AC;
②设∠BAC=α(其中α为常数),求∠BCP;
(2)如图2,CM、BN为△ABC的角平分线,若BM+CN=6,∠BAC=60°,请你直接写出点P到直线BC的距离的最大值等于___________.

(本题10分)如图,利用一面长为34米的墙,用铁栅栏围成一个矩形自行车场地ABCD,在AB和BC边各有一个2米宽的小门(不用铁栅栏).设矩形ABCD的边AD长为x米,AB长为y米,矩形的面积为S平方米,且x<y.

(1)若所用铁栅栏的长为40米,求y与x的函数关系式,并直接写出自变量x的取值范围;
(2)在(1)的条件下,求S与x的函数关系式,并求出怎样围才能使矩形场地的面积为192平方米?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号