等边△ABC的边长为2,P是BC边上的任一点(与B、C不重合),连接AP,以AP为边向两侧作等边△APD和等边△APE,分别与边AB、AC交于点M、N(如图1)。
(1)求证:AM=AN;
(2)设BP=x。
①若,BM=,求x的值;
②记四边形ADPE与△ABC重叠部分的面积为S,求S与x之间的函数关系式以及S的最小值;
③连接DE,分别与边AB、AC交于点G、H(如图2),当x取何值时,∠BAD=150?并判断此时以DG、GH、HE这三条线段为边构成的三角形是什么特殊三角形,请说明理由。
端午节期间,某食品店平均每天可卖出300只粽子,且卖出1只粽子的利润是1元。经调查发现,零售单价每降0.1元,每天可多卖出100只粽子。为了使每天获取的利润更多,该店决定把零售单价下降元。在不考虑其他因素的条件下,当
定为多少时,才能使该店每天获取的利润是420元,并且卖出的粽子更多?
如图:已知二次函数的图象经过点A(-1,0),B(3,0),C(0,-5),
(1)试确定此二次函数的解析式;
(2)点P是抛物线对称轴上的一个动点,是否存在点P,使PB+PC的值最小,如果存在,请求出点P的坐标,如果不存在,请说明理由。
六一儿童节,某学习用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠。其中,书包每个定价20元,水性笔每支定价5元。小丽和同学需买4个书包,水性笔若干支(不少于4支)。
(1)分别写出两种优惠方法购买费用(元)与所买水性笔支数
(支)的函数解析式(请化简函数解析式);
(2)对的取值情况进行分析,说明按哪种优惠方法购买比较便宜。
如图,杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一点)的路线是抛物线的一部分。
(1)求演员弹跳离地面的最大高度;
(2)已知在一次表演中,人梯高=4米,人梯到起跳点
的水平距离是6米,问这次表演是否成功?请说明理由。
经统计分析,南博会期间,昆明环湖东路上的车流速度(千米/小时)是车流密度
(辆/千米)的一次函数。当车流密度为20辆/千米时,车流速度为80千米/小时;当车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时。求大桥上车流密度为100辆/千米时的车流速度。