游客
题文

等边△ABC的边长为2,P是BC边上的任一点(与B、C不重合),连接AP,以AP为边向两侧作等边△APD和等边△APE,分别与边AB、AC交于点M、N(如图1)。
(1)求证:AM=AN;
(2)设BP=x。
①若,BM=,求x的值;
②记四边形ADPE与△ABC重叠部分的面积为S,求S与x之间的函数关系式以及S的最小值;
③连接DE,分别与边AB、AC交于点G、H(如图2),当x取何值时,∠BAD=150?并判断此时以DG、GH、HE这三条线段为边构成的三角形是什么特殊三角形,请说明理由。

科目 数学   题型 解答题   难度 困难
知识点: 三角形的五心 圆内接四边形的性质 相似多边形的性质 解直角三角形
登录免费查看答案和解析
相关试题

已知:如图,在矩形ABCD中,AF=BE.求证:DE=CF;

先化简再求值:其中a=3

计算:

已知:抛物线轴交于A(1,0)和B(,0)点,与轴交于C点
(1)求出抛物线的解析式;
(2)设抛物线对称轴与轴交于M点,在对称轴上是否存在P点,使为等腰三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;
(3)若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求此时点E 的坐标.

已知:在梯形中,的中点,是正三角形.动点P、Q分别在线段上运动,且∠MPQ=60°保持不变.
(1)求证:△BMP∽△CPQ
(2)设PC=,MQ=的函数关系式;
(3)在(2)中,当取最小值时,判断的形状,并说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号