游客
题文

一列长110米的火车以每小时30千米的速度向北缓缓驶去,铁路旁一条小路上,一位工人也正向北步行。14时10分时火车追上这位工人,15秒后离开。14时16分迎面遇到一个向南走的学生,12秒后离开这个学生。问:工人与学生将在何时相遇?

科目 数学   题型 解答题   难度 中等
知识点: 幂的乘方与积的乘方
登录免费查看答案和解析
相关试题

如图①所示,已知为直线上两点,点为直线上方一动点,连接,分别以为边向外作正方形和正方形,过点于点,过点于点.

(1)如图②,当点恰好在直线上时(此时重合),试说明
(2)在图①中,当两点都在直线的上方时,试探求三条线段之间的数量关系,并说明理由;
(3)如图③,当点在直线的下方时,请直接写出三条线段之间的数量关系.(不需要证明)

(1) 如图1,在正方形ABCD中,点E,F分别在边BC,CD上,AE,BF交于点O,∠AOF=90°.求证:BE=CF.

(2) 如图2,在正方形ABCD中,点E,H,F,G分别在边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°, EF=4.求GH的长.

(3) 已知点E,H,F,G分别在矩形ABCD的边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°,EF=4. 直接写出下列两题的答案:
①如图3,矩形ABCD由2个全等的正方形组成,求GH的长;

②如图4,矩形ABCD由n个全等的正方形组成,求GH的长(用n的代数式表示).

如图,在四边形ABCD中,∠BAC=∠ACD=90°,∠B=∠D.

(1)求证:四边形ABCD是平行四边形;
(2)若AB=3cm,BC=5cm,点P从B点出发,以1cm/s的速度沿BC→CD→DA运动至A点停止,则从运动开始经过多少时间,△ABP为等腰三角形?

如图,已知E、F分别是▱ABCD的边BC、AD上的点,且BE=DF.

(1)求证:四边形AECF是平行四边形;
(2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.

已知:如图,BC是等腰△BED底边ED上的高,四边形ABEC是平行四边形。求证:四边形ABCD是矩形.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号