某房屋开发公司用100万元购得一块土地,该地可以建造每层1000m2的楼房,楼房的总建筑面积(即各层面积之和)每平方米平均建筑费用与建筑高度有关,楼房每升高一层,整幢楼房每平方米建筑费用提高5%。已知建筑5层楼房时,每平方米建筑费用为400元,公司打算造一幢高于5层的楼房,为了使该楼房每平方和的平均综合费用最低(综合费用是建筑费用与购地费用之和),公司应把楼层建成几层?
(本小题满分13分)已知且
,
(1)判断函数的奇偶性;
(2) 判断函数的单调性,并证明;
(3)当函数的定义域为
时,求使
成立的实数
的取值范围.
(本小题满分14分)
已知函数,
(1) 求函数的最小正周期及取得最小值的x的集合;
(2) 求函数的单调递增区间.
(3)求在
处的切线方程.
(本小题满分13分)已知是定义在R上的奇函数,当
时
;
(1)求函数的表达式;
(2)画出其大致图像并指出其单调区间.
(3)若函数-1有三个零点,求K的取值范围;
.设集合,
,全集为R
(1)当时,求:
;
(2)若,求实数
的取值范围.
(3)当时,求B的非空真子集的个数;
(本小题满分12分)
已知二次函数.
(1)若,
,解关于x不等式
;
(2)若f(x)的最小值为0,且A.<b,设,请把
表示成关于t的函数g(t),并求g(t)的最小值.