如图,某市新体育公园的中心广场平面图如图所示,在y轴左侧的观光道曲线段是函数
,
时的图象且最高点B(-1,4),在y轴右侧的曲线段是以CO为直径的半圆弧.⑴试确定A,
和
的值;⑵现要在右侧的半圆中修建一条步行道CDO(单位:米),在点C与半圆弧上的一点D之间设计为直线段(造价为2万元/米),从D到点O之间设计为沿半圆弧的弧形(造价为1万元/米).设
(弧度),试用
来表示修建步行道的造价预算,并求造价预算的最大值?(注:只考虑步行道的长度,不考虑步行道的宽度)
设向量a =
, b =
(其中实数
不同时为零),当
时,有a⊥b;当
时,有a∥b.
(Ⅰ)求函数解析式
;
(Ⅱ)设
,且
,求
.
(Ⅰ)已知:
,求
的值.
(Ⅱ)已知
,
为锐角,求
的值.

在
中,点E是AB的中点,点F在BD上,且BF=
BD,求证:E、F、C三点共线.
(本小题满分14分)
(1)为了测量两山顶M,N间的距离,飞机沿水平方向在A,B两点进行测量,A,B,M,N在同一个铅垂平面内(如示意图),飞机能够测量的数据有:①AB=
;②A点处对M、N两点的俯角分别为
和
;B点处对M、N两点的俯角分别为
和
;请同学们在示意图中标出这四个俯角并用文字和公式写出计算M,N间的距离的步骤.
(2)在△ABC 中,若AB=2,AC=2BC,求△ABC面积的最大值.
(本小题满分13分) 已知⊙O经过三点(1,3)、(-3,-1)、(-1,3),⊙M是以两点(7,
),(9,
)为直径的圆.过⊙M上任一点P作⊙O的切线PA、PB,切点为A、B.
(1)求⊙O及⊙M的方程;
(2)若直线PA与⊙M的另一交点为Q,当弦PQ最长时,求直线PA的方程;
(3)求
的最大值与最小值.