(本小题满分13分) 已知⊙O经过三点(1,3)、(-3,-1)、(-1,3),⊙M是以两点(7,),(9,
)为直径的圆.过⊙M上任一点P作⊙O的切线PA、PB,切点为A、B.
(1)求⊙O及⊙M的方程;
(2)若直线PA与⊙M的另一交点为Q,当弦PQ最长时,求直线PA的方程;
(3)求的最大值与最小值.
用数学归纳法证明:(n∈N*)
用总长14.8米的钢条制作一个长方体容器的框架,如果所制容器底面一边的长比另一边的长多0.5米,那么高为多少时容器的容积最大?最大容积是多少?
求由曲线y =" x2" 与 y =" 2-" x2 围成的平面图形的面积
已知函数f(x) =" x3" + ax2 + bx + c,当x = -1时,f(x)的极大值为7;当x = 3时,f(x)有极小
值. 求:
(1)a、b、c的值;
(2)函数f(x)的极小值
(本小题满分16分)
给定两个长度为1的平面向量和
,它们的夹角为
.
(1)求|+
|;
(2)如图(1)所示,点在以
为圆心的圆弧⌒AB上运动.若
其中,求
的最大值?
(3)若点、点
在以
为圆心,1为半径的圆上,且
,问
与
的夹角
取何值时,
的值最大?并求出这个最大值.
图(1)图(2)