(本小题满分16分)给定两个长度为1的平面向量和,它们的夹角为.(1)求|+|;(2)如图(1)所示,点在以为圆心的圆弧⌒AB上运动.若其中,求的最大值?(3)若点、点在以为圆心,1为半径的圆上,且,问与的夹角取何值时,的值最大?并求出这个最大值.图(1) 图(2)
二次函数满足且. (1)求的解析式; (2)在区间上,的图象恒在的图象上方,试确定实数的范围.
已知集合,,若.求实数的取值范围.
已知椭圆(),其右顶点为,上、下顶点分别为,.直线的斜率为,过椭圆的右焦点的直线交椭圆于,两点(,均在轴右侧). (1)求椭圆的方程; (2)设四边形面积为,求的取值范围.
已知,设函数. (1)若时,求函数的单调区间; (2)若,对于任意的,不等式恒成立,求实数的最大值及此时的值.
如图所示,椭圆与直线相切于点. (1)求满足的关系式,并用表示点的坐标; (2)设是椭圆的右焦点,若是以为直角顶点的等腰直角三角形,求椭圆的标准方程.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号