如图所示,一个质量为m=2.0×10-11kg,电荷量q=+1.0×10-5C的带电微粒(重力忽略不计),从静止开始经U=100V电压加速后,水平进入两平行金属板间的偏转电场中。金属板长L=20cm,两板间距d=10cm。求:
⑴微粒进入偏转电场时的速度v是多大?
⑵若微粒射出电场过程的偏转角为θ=30°,则两金属板间的电压U2是多大?
某学习小组做了如下实验:先把空的烧瓶放入冰箱冷冻,取出烧瓶,并迅速把一个气球紧套在烧瓶颈上,封闭了一部分气体,然后将烧瓶放进盛满热水的烧杯里,气球逐渐膨胀起来,如图。
(1)在气球膨胀过程中,下列说法正确的是
A.该密闭气体分子间的作用力增大 |
B.该密闭气体组成的系统熵增加 |
C.该密闭气体的压强是由于气体重力而产生的 |
D.该密闭气体的体积是所有气体分子的体积之和 |
(2)(4分)若某时刻该密闭气体的体积为V,密度为ρ,平均摩尔质量为M,阿伏加德罗常数为NA,则该密闭气体的分子个数为;
(3)(4分)若将该密闭气体视为理想气体,气球逐渐膨胀起来的过程中,气体对外做了0.6J的功,同时吸收了0.9J的热量,则该气体内能变化了J;若气球在膨胀过程中迅速脱离瓶颈,则该气球内气体的温度(填“升高”或“降低”)。
如图所示,一水平光滑、距地面高为h、边长为a的正方形MNPQ桌面上,用长为L的不可伸长的轻绳连接质量分别为mA、mB的A、B两小球,两小球在绳子拉力的作用下,绕绳子上的某点O以不同的线速度做匀速圆周运动,圆心O与桌面中心重合,已知mA=0.5 kg,L=1.2 m,LAO=0.8 m,a=2.1 m,h=1.25 m,A球的速度大小vA=0.4 m/s,重力加速度g取10 m/s2,求:
(1)绳子上的拉力F以及B球的质量mB;
(2)若当绳子与MN平行时突然断开,则经过1.5 s两球的水平距离;
(3)两小球落至地面时,落点间的距离.
如图所示,宇航员站在某质量分布均匀的星球表面一斜坡上P点沿水平方向以初速度v0抛出一个小球,侧得小球经时间t落到斜坡上另一点Q,斜面的倾角为,已知该星球半径为R,万有引力常量为G,求:
(1)该星球表面的重力加速度g;
(2)该星球的密度;
(3)该星球的第一宇宙速度v;
(4)人造卫星绕该星球表面做匀速圆周运动的最小周期T.
飞机距离地面高H=500m,水平飞行的速度为υ=100m/s,攻击一辆速度为υ
=20m/s相向行驶的汽车,欲使投弹击中汽车,飞机应在距汽车多远处投弹?(g=10m/s
)
万有引力定律的地—月检验,假定维持月球绕地球运动的力与使得苹果下落的力是同一种力,已知地球表面重力加速度g,半径R;月球绕地球公转周期为T。月球轨道半径约为地球半径的60倍,根据牛顿定律可知月球在轨道上运动的加速度为()。而根据月球匀速圆周运动计算出其向心加速度为( )。计算结果符合得很好,表明物体间的引力遵从相同的规律。