如图所示,两平行导轨间距L=0.1 m,足够长光滑的倾斜部分和粗糙的水平部分圆滑连接,倾斜部分与水平面的夹角θ=30°,垂直斜面方向向上的磁场磁感应强度B=0.5 T,水平部分没有磁场.金属棒ab质量m=0.005 kg、电阻r=0.02 Ω,运动中与导轨始终接触良好,并且垂直于导轨.电阻R=0.08 Ω,其余电阻不计.当金属棒从斜面上离地高h=1.0 m以上的任何地方由静止释放后,在水平面上滑行的最大距离x都是1.25 m.取g=10 m/s2,求:
(1)金属棒在斜面上的最大速度;
(2)金属棒与水平面间的动摩擦因数;
(3)从高度h=1.0 m处滑下后电阻R上产生的热量.
质量m=0.78 kg的木块静止于水平面上,现在恒力F作用下做匀加速直线运动,已知恒力大小F=4.5N,方向与水平方向成q=37°角斜向上,如图所示.3 s末撤去此拉力时,木块已滑行的距离s0=9m,(重力加速度g取10 m/s2,sin37°=0.6,cos37°=0.8.)求:
(1)木块与地面间的动摩擦因数;
(2)撤去拉力后,木块继续滑行的距离;
(3)在整个运动过程中,摩擦力对木块做的功.
如图所示,在倾角为θ = 30o 的光滑斜面的底端有一个固定挡板D,小物体C靠在挡板D上,小物体B与C用轻质弹簧拴接。当弹簧处于自然长度时,B在O点;当B静止时,B在M点, OM = l。在P点还有一小物体A,使A从静止开始下滑,A、B相碰后一起压缩弹簧。A第一次脱离B后最高能上升到N点,ON =" 1.5" l。B运动还会拉伸弹簧,使C物体刚好能脱离挡板D。A、B、C的质量都是m,重力加速度为g。
求(1)弹簧的劲度系数;
(2)弹簧第一次恢复到原长时B速度的大小;
(3)M、P之间的距离。
现有两个宽度为d、质量为m的相同的小物块A、B,一带孔圆环C,其质量为2m,半径为d,它们的厚度均可忽略。一不可伸长的轻质细绳绕过光滑的定滑轮,一端连接A物块,一端穿过圆环C的小孔连接B物块,如图所示。现将A置于水平地面,距滑轮底端3L,BC距水平地面为L,在B的正下方有一深、宽
的凹槽。B、C落地后都不再弹起。求A物块上升到最大高度所经历的时间。
(17分)如图(a)所示,平行金属板A和B间的距离为d,现在A、B板上加上如图(b)所示的方波形电压,t=0时A板比B板的电势高,电压的正向值为U0,反向值也为U0,现有由质量为m的带正电且电荷量为q的粒子组成的粒子束,从AB的中点O以平行于金属板方向OO/的速度射入,所有粒子在AB间的飞行时间均为T,不计重力影响。
(1)求粒子打出电场时位置离O/点的距离范围
(2)求粒子飞出电场时的速度
(3)若要使打出电场的粒子经某一圆形区域的匀强磁场偏转后都能通过圆形磁场边界的一个点处,而便于再收集,则磁场区域的最小直径和相应的磁感应强度是多大?
(16分)如图所示,两根光滑的平行金属导轨处于同一水平面内,相距L=0.3m,导轨的左端M、N用0.2Ω的电阻R连接,导轨电阻不计.导轨上停放着一金属杆,杆的电阻r=0.1,质量m=0.1kg,整个装置处于竖直向下的匀强磁场中,磁感应强度B=0.5T 。现在金属杆上施加一垂直于杆的水平向右外力F,使R上的电压每秒钟均匀地增加0.05V,设导轨足够长。
(1)证明金属棒做匀加速运动并求出加速度的大小
(2)写出外力F随时间变化的函数式
(3)试求从杆开始运动后的2s内通过电阻R的电量.