如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm,点P、Q为AB边及BC边上的两个动点。(1)若点P从点A沿AB边向点B以1cm/s的速度移动,与此同时,点Q从点B开始沿BC边向点C以2cm/s的速度移动,两个点同时出发。
①经过几秒,△PBQ的面积等于8cm2;
②是否存在这样的时刻,使△PBQ的面积等于10 cm2?如果存在请求出来,如果不存在,请说明理由。
(2)假设点P、Q可以分别在AB、BC边上任意移动,是否存在PQ同时平分△ABC的周长和面积的情况?如果存在请求出BP的长度;如果不存在,请说明理由。
如图,已知 , ,请用尺规过点 作一条直线,使其将 分成两个相似的三角形(保留作图痕迹,不写作法)
问题提出
(1)如图①,在 中, , 为 上一点, ,则 面积的最大值是 .
问题探究
(2)如图②,已知矩形 的周长为12,求矩形 面积的最大值.
问题解决
(3)如图③, 是葛叔叔家的菜地示意图,其中 米, 米, 米,现在他想利用周边地的情况,把原来的三角形地拓展成符合条件的面积尽可能大、周长尽可能长的四边形地,用来建鱼塘.已知葛叔叔欲建的鱼塘是四边形 ,且满足 .你认为葛叔叔的想法能否实现?若能,求出这个四边形鱼塘周长的最大值;若不能,请说明理由.
如图所示,在平面直角坐标系中, 为坐标原点,且 是等腰直角三角形, ,点 .
(1)求点 的坐标;
(2)求经过 、 、 三点的抛物线的函数表达式;
(3)在(2)所求的抛物线上,是否存在一点 ,使四边形 的面积最大?若存在,求出点 的坐标;若不存在,请说明理由.
如图,已知 的半径为5, 是 的内接三角形, ,.过点 作 的切线 ,过点 作 ,垂足为 .
(1)求证:
(2)求线段 的长.
孙老师在上《等可能事件的概率》这节课时,给同学们提出了一个问题:"如果同时随机投掷两枚质地均匀的骰子,它们朝上一面的点数和是多少的可能性最大?"同学们展开讨论,各抒己见,其中小芳和小超两位同学给出了两种不同的回答,小芳认为6的可能性最大,小超认为7的可能性最大,你认为他们俩的回答正确吗?请用列表或画树状图等方法加以说明.
(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体.