【问题情境】已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
【数学模型】
设该矩形的长为x,周长为y,则y与x的函数关系式为y=2(x+)(x>0).
【探索研究】(1)我们可以借鉴以前研究函数的经验,先探索函数y=x+(x>0)的图象和性质.
①填写下表,画出函数的图象;
x |
… |
![]() |
![]() |
![]() |
1 |
2 |
3 |
4 |
… |
y |
… |
|
|
|
|
|
|
|
… |
②观察图象,写出该函数两条不同类型的性质;
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数y=x+(x>0)的最小值
【解决问题】
(2)用上述方法解决“问题情境”中的问题,直接写出答案.
解方程:(每小题4分,共8分)
(1);
(2).
如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A—C—B向点B运动,设运动时间为t秒(t>0),
(1)在AC上是否存在点P使得PA=PB?若存在,求出t的值;若不存在,说明理由;
(2)若点P恰好在△ABC的角平分线上,请直接写出t的值.
如图,已知直线l1∥l2∥l3,且l1,l2之间的距离为1, l2,l3之间的距离为2 ,点A、C分别在直线l2,l1上,
(1)利用直尺和圆规作出以AC为底的等腰△ABC,使得点B落在直线l3上(保留作图痕迹,不写作法);
(2)若(1)中得到的△ABC为等腰直角三角形,求AC的长.
如图,△是等边三角形,点
、
分别是
、
的延长线上的点,且
,
的延长线交
于点
.
(1)求证:;
(2)求的度数.
如图,在等腰RT△中,
,
,点
是斜边
的中点,点
、
分别为
、
边上的点,且
.
(1)判断与
的大小关系,并说明理由;
(2)若,
,求△
的面积.