游客
题文

如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A—C—B向点B运动,设运动时间为t秒(t>0),

(1)在AC上是否存在点P使得PA=PB?若存在,求出t的值;若不存在,说明理由;
(2)若点P恰好在△ABC的角平分线上,请直接写出t的值.

科目 数学   题型 解答题   难度 中等
知识点: 三角形的五心
登录免费查看答案和解析
相关试题

计算: | - 2 | - 2 sin 45 ° + ( 1 - 3 ) 0 + 2 × 8

如图,已知二次函数 y = a x 2 + bx + c 的图象经过点 C ( 2 , - 3 ) ,且与 x 轴交于原点及点 B ( 8 , 0 )

(1)求二次函数的表达式;

(2)求顶点 A 的坐标及直线 AB 的表达式;

(3)判断 ΔABO 的形状,试说明理由;

(4)若点 P O 上的动点,且 O 的半径为 2 2 ,一动点 E 从点 A 出发,以每秒2个单位长度的速度沿线段 AP 匀速运动到点 P ,再以每秒1个单位长度的速度沿线段 PB 匀速运动到点 B 后停止运动,求点 E 的运动时间 t 的最小值.

阅读下面的材料:

如果函数 y = f ( x ) 满足:对于自变量 x 取值范围内的任意 x 1 x 2

(1)若 x 1 < x 2 ,都有 f ( x 1 ) < f ( x 2 ) ,则称 f ( x ) 是增函数;

(2)若 x 1 < x 2 ,都有 f ( x 1 ) > f ( x 2 ) ,则称 f ( x ) 是减函数.

例题:证明函数 f ( x ) = x 2 ( x > 0 ) 是增函数.

证明:任取 x 1 < x 2 ,且 x 1 > 0 x 2 > 0

f ( x 1 ) - f ( x 2 ) = x 1 2 - x 2 2 = ( x 1 + x 2 ) ( x 1 - x 2 )

x 1 < x 2 x 1 > 0 x 2 > 0

x 1 + x 2 > 0 x 1 - x 2 < 0

( x 1 + x 2 ) ( x 1 - x 2 ) < 0 ,即 f ( x 1 ) - f ( x 2 ) < 0 f ( x 1 ) < f ( x 2 )

函数 f ( x ) = x 2 ( x > 0 ) 是增函数.

根据以上材料解答下列问题:

(1)函数 f ( x ) = 1 x ( x > 0 ) f (1) = 1 1 = 1 f (2) = 1 2 f (3) =    f (4) =   

(2)猜想 f ( x ) = 1 x ( x > 0 )   函数(填“增”或“减” ) ,并证明你的猜想.

张家界大峡谷玻璃桥是我市又一闻名中外的五星景点.某校初三年级在一次研学活动中,数学研学小组设计以下方案测量桥的高度.如图,在桥面正下方的谷底选一观测点 A ,观测到桥面 B C 的仰角分别为 30 ° 60 ° ,测得 BC 长为320米,求观测点 A 到桥面 BC 的距离.(结果保留整数,参考数据: 3 1 . 73 )

如图,在 Rt Δ AOB 中, ABO = 90 ° OAB = 30 ° ,以点 O 为圆心, OB 为半径的圆交 BO 的延长线于点 C ,过点 C OA 的平行线,交 O 于点 D ,连接 AD

(1)求证: AD O 的切线;

(2)若 OB = 2 ,求弧 CD 的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号