如图,已知直线l1∥l2∥l3,且l1,l2之间的距离为1, l2,l3之间的距离为2 ,点A、C分别在直线l2,l1上,
(1)利用直尺和圆规作出以AC为底的等腰△ABC,使得点B落在直线l3上(保留作图痕迹,不写作法);
(2)若(1)中得到的△ABC为等腰直角三角形,求AC的长.
为鼓励学生参加体育锻炼,学校计划拿出不超过3200元的资金购买一批篮球和
排球,已知篮球和排球的单价比为3:2,单价和为160元.
(1)篮球和排球的单价分别是多少元?
(2)若要求购买的篮球和排球的总数量是36个,且购买的排球数少于11个,有哪几种购买方案?
如图6,AB是⊙O的直径,BC⊥AB于点B,连接OC交⊙O于
点E,弦AD∥OC.(1)求证:;
(2)求证:CD是⊙O的切线.
![]() |
|||
|
|||
某县为了了解“十、一”国庆期间该县常住居民的出游情况,有关部门随机调查了1600名常住居民,并根据调查结果绘制了如下统计图:
![]() |
根据以上信息,解答下列各题:
(1)补全条形统计图,在扇形统计图中,直接填入出游主要目的是采集发展信息的人数的百分数;
(2)若该县常住居民共48万人,请估计该县常住居民中,利用“十、一”期间出游采集发展信息的人数;
(3)综合上述信息,用一句话谈谈你的感想.
.已知:如图4,在中,∠BAC=90°,DE、DF是
的中位线,连结EF、AD.求证:EF=AD.
(1)先化简,再求值:
(2)已知一次函数y=kx+b的图像经过两点A(1,1),B(2,-1),求这个函数的解析式.