某校为了解“课程选修”的情况,对报名参加“艺术鉴赏”,“科技制作”,“数学思维”,“阅读写作”这四个选修项目的学生(每人限报一项)进行抽样调查,下面是根据收集的数据绘制的不完整的统计图:
请根据图中提供的信息,解答下面的问题:
(1)此次共调查了 名学生,扇形统计图中“艺术鉴赏”部分的圆心角是 度;
(2)请把这个条形统计图补充完整;
(3)现该校共有800名学生报名参加这四个选修项目,请你估计其中有多少名学生选修“科技制作”项目.
如图,中,
,
,过点
作
∥
,点
、
分别是射线
、线段
上的动点,且
,过点
作
∥
交线段
于点
,联接
,设
面积为
,
.
(1)用的代数式表示
;
(2)求与
的函数关系式,并写出定义域;
(3)联接,若
与
相似,求
的长.
解下列一元二次方程:
(1); (2)
.
如图所示,△ABC中,∠A=96°。
(1)BA1平分∠ABC,CA1平分∠ACD,请你求∠A1的度数;
(2)BA2平分∠A1BC,CA2平分∠A1CD,请你求∠A2的度数;
(3)依次类推,写出∠与∠
的关系式。
(4)小明同学用下面的方法画出了α角:作两条互相垂直的直线MN、PQ,垂足为O,作∠PON的角平分线OE,点A、B分别是OE、PQ上任意一点,再作∠ABP的平分线BD,BD的反向延长线交∠OAB的平分线于点C,那么∠C就是所求的α角,则α的度数为.
(1)已知方程x2+px+q=0(p2-4q≥0)的两根为x1、x2,求证:x1+x2=-p,x1·x2=q.(2)已知抛物线y=x2+px+q与x轴交于点A、B,且过点(―1,―1),设线段AB的长为d,当p为何值时,d2取得最小值并求出该最小值.
若两圆的圆心距d满足等式,且两圆的半径是方程
的两个根,试判断这两圆的位置关系.