游客
题文

如图1,已知有一张三角形纸片ABC的一边AB=10,若D为AB边上的点,过点D作DE∥BC交AC于点E,分别过点D、E作DF⊥BC于F,EG⊥BC于G,把三角形纸片ABC分别沿DE、DF、EG按图1方式折叠,点A、B、C分别落在A′、B′、C′处.若点A′、B′、C′在矩形DFGE内或者其边上,且互不重合,此时我们称△A′B′C′(即图中阴影部分)为“重叠三角形”.
实践探究:
(1)当AD=4时,
①若∠A=90°,AB=AC,请在图2中画出“重叠三角形”,S△A′B′C′=    
②若AB=AC,BC=12,如图3,S△A′B′C′=    
③若∠B=30°,∠C=45°,如图4,S△A′B′C′=     .
(2)若△ABC为等边三角形(如图5),AD=m,且重叠三角形A′B′C′存在,试用含m的代数式表示重叠三角形A′B′C′ 的面积,并写出m的取值范围.

科目 数学   题型 解答题   难度 中等
知识点: 三角形的五心 含绝对值的一元一次不等式
登录免费查看答案和解析
相关试题

甲、乙二人在一环形场地上从A点同时同向匀速跑步,甲的速度是乙的2.5倍,4分钟两人首次相遇,此时乙还需要跑300米才跑完第一圈,求甲、乙二人的速度及环形场地的周长.(列方程( 组) 求解)

ABCD中,点E、F分别在AB、CD上,且AE=CF.

(1)求证:△ADE≌△CBF;
(2)若DF=BF,求证:四边形DEBF为菱形.

先化简,再求值:,其中m=2.

问题探究
(1)请在图①中作出两条直线,使它们将圆面四等分;
(2)如图②,M是正方形ABCD内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M),使它们将正方形ABCD的面积四等分,并说明理由.
问题解决
(3)如图③,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点,如果AB=,CD=,且,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分?若存在,求出BQ的长;若不存在,说明理由.

在平面直角坐标系中,一个二次函数的图象经过点A(1,0)、B(3,0)两点.

(1)写出这个二次函数的对称轴;
(2)设这个二次函数的顶点为D,与y轴交于点C,它的对称轴与x轴交于点E,连接AD、DE和DB,当△AOC与△DEB相似时,求这个二次函数的表达式。
[提示:如果一个二次函数的图象与x轴的交点为A,那么它的表达式可表示为:]

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号