游客
题文

已知曲线C上任意一点P到两定点F1(-1,0)与F2(1,0)的距离之和为4.
(1)求曲线C的方程;
(2)设曲线C与x轴负半轴交点为A,过点M(-4,0)作斜率为k的直线l交曲线C于B、C两点(B在M、C之间),N为BC中点.
(ⅰ)证明:k·kON为定值;
(ⅱ)是否存在实数k,使得F1N⊥AC?如果存在,求直线l的方程,如果不存在,请说明理由.

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

为了迎接2009年10月1日建国60周年,某城市为举办的大型庆典活动准备了四种保证安全的方案,列表如下:

方案
A
B
C
D
经费
300万元
400万元
500万元
600万元
安全系数
0.6
0.7
0.8
0.9

其中安全系数表示实施此方案能保证安全的系数,每种方案相互独立,每种方案既可独立用,又可以与其它方案合用,合用时,至少有一种方案就能保证整个活动的安全。
(I)若总经费在1200万元内(含1200万元),如何组合实施方案可以使安全系数最高?
(II)要保证安全系数不小于0.99,至少需要多少经费?

如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF且BE<CF,∠BCF=,AD=,EF=2.(Ⅰ)求证: AE∥平面DCF;(Ⅱ)若,且二面角A—EF—C的大小为,求的长。

质点在轴上从原点出发向右运动,每次平移一个单位或两个单位,且移动一个单位的概率为,移动2个单位的概率为,设质点运动到点的概率为
(Ⅰ)求;(Ⅱ)用表示并证明是等比数列; (Ⅲ)求

(本小题满分14分)
对函Φx),定义fkx)=Φxmk)+nk(其中x∈(mk
mmk],kZm>0,n>0,且mn为常数)为Φx)的第k阶阶梯函数,m叫做阶宽,n叫做阶高,已知阶宽为2,阶高为3.
(1)当Φx)=2x时 ①求f0x)和fkx的解析式; ②求证:Φx)的各阶阶梯函数图象的最高点共线;

(本小题满分12分)设直线l(斜率存在)交抛物线y2=2pxp>0,且p是常数)于两个不同点Ax1y1),Bx2y2),O为坐标原点,且满足x1x2+2(y1y2).
(1)求证:直线l过定点;
(2)设(1)中的定点为P,若点M在射线PA上,满足,求点M
的轨迹方程.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号