已知不等式.
(1)求该不等式的解集M;
(2)若,求证:
已知M(-3,0)﹑N(3,0),P为坐标平面上的动点,且直线PM与直线PN的斜率之积为常数m(m-1,m
0).
(1)求P点的轨迹方程并讨论轨迹是什么曲线?
(2)若, P点的轨迹为曲线C,过点Q(2,0)斜率为
的直线
与曲线C交于不同的两点A﹑B,AB中点为R,直线OR(O为坐标原点)的斜率为
,求证
为定值;
(3)在(2)的条件下,设,且
,求
在y轴上的截距的变化范围.
如图所示的几何体中,
平面
,
,
,
,
是
的中点。
(Ⅰ)求证:;
(Ⅱ)设二面角的平面角为
,求
。
已知点是中心在原点,长轴在x轴上的椭圆的一个顶点,离心率为
,
椭圆的左右焦点分别为F1和F2 。
(Ⅰ)求椭圆方程;
(Ⅱ)点M在椭圆上,求⊿MF1F2面积的最大值;
(Ⅲ)试探究椭圆上是否存在一点P,使,若存在,请求出点P的坐标;
若不存在,请说明理由。
在直角坐标系中,以
为圆心的圆与直线
相切.
(1)求圆的方程;(2)圆
与
轴相交于
两点,圆内的动点
使
成等比数列,求
的取值范围
已知,O是原点,点P(x, y)的坐标满足
(1)求的最大值.;(2)求
的取值范围.