已知点是中心在原点,长轴在x轴上的椭圆的一个顶点,离心率为
,
椭圆的左右焦点分别为F1和F2 。
(Ⅰ)求椭圆方程;
(Ⅱ)点M在椭圆上,求⊿MF1F2面积的最大值;
(Ⅲ)试探究椭圆上是否存在一点P,使,若存在,请求出点P的坐标;
若不存在,请说明理由。
.(本小题满分12分)
如图所示,有公共边的两正方形ABB1A1与BCC1B1的边AB、BC均在平面α内,且,M是BC的中点,点N在C1C上。
(1)试确定点N的位置,使
(2)当时,求二面角M—AB1—N的余弦值。
.(本小题满分12分)
鲜花扫墓渐流行,清明节期间,吉安某鲜花店某种鲜花的进货价为每束10元,销售价为每束20元,若在清明节期间内没有售完,则在清明节营业结束后以每束5元的价格处理,据前5年的有关资料统计,这种
鲜花的需
求量X(束)服从以下分布:
X |
20 |
30 |
40 |
50 |
P |
0.20 |
0.![]() |
a |
0.15 |
(1)求a的值;
(2)当进货量为20,30束时,分别求出该店获利润的期望值;
(3)该店今年清明节前进该种鲜花多少束为宜?
.(本小题满分12分)
已知函数,若函数
的图象在x=1处的切线平行于x轴且数列
满足
(1)求当的关系式;
(2)若,求证:任意
,都有
成立。
(本小题满分12分)
已知函数
(1)求的值;
(2)若且1与
的等差中项大于1与
的等比中项的平方,求
的取值范围。
某化工厂生产的某种化工产品,当年产量在150吨至250吨之内,其年生产的总成本(万元)与年产量
(吨)之间的关系可近似地表示为
。
(1)当年产量为多少吨时,每吨的平均成本最低,并求每吨最低平均成本
(2)若每吨平均出厂价为16万元,求年生产多少吨时,可获得最大的年利润,并求最大年利润。