如图所示,机器人海宝按照以下程序运行
1从A出发到达点B或C或D,到达点B、C、D之一就停止;
②每次只向右或向下按路线运行;
③在每个路口向下的概率
;
④到达P时只向下,到达Q点只向右.
(1)求海宝过点从A经过M到点B的概率,求海宝过点从A经过N到点C的概率;
(2)记海宝到点B、C、D的事件分别记为X=1,X=2,X=3,求随机变量X的分布列及期望.
已知定义域为R的函数
的一段图象如图所示.
(1)求
的解析式;
(2)若
求函数
的单调递增区间.
设数列
的各项均为正实数,
,若数列
满足
,
,其中
为正常数,且
.
(1)求数列
的通项公式;
(2)是否存在正整数
,使得当
时,
恒成立?若存在,求出使结论成立的
的取值范围和相应的
的最小值;若不存在,请说明理由;
(3)若
,设数列
对任意的
,都有
成立,问数列
是不是等比数列?若是,请求出其通项公式;若不是,请说明理由.
若函数
(
为实常数).
(1)当
时,求函数
在
处的切线方程;
(2)设
.
①求函数
的单调区间;
②若函数
的定义域为
,求函数
的最小值
.
某地开发了一个旅游景点,第1年的游客约为100万人,第2年的游客约为120万人.某数学兴趣小组综合各种因素预测:①该景点每年的游客人数会逐年增加;②该景点每年的游客都达不到130万人.该兴趣小组想找一个函数
来拟合该景点对外开放的第
年与当年的游客人数
(单位:万人)之间的关系.
(1)根据上述两点预测,请用数学语言描述函数
所具有的性质;
(2)若
=
,试确定
的值,并考察该函数是否符合上述两点预测;
(3)若
=
,欲使得该函数符合上述两点预测,试确定
的取值范围.