游客
题文

如图,已知AB∥CD,∠AEC=90°,那么∠A与∠C的度数和为多少度?为什么?
解:∠A与∠C的度数和为 _________ 
理由:过点E作EF∥AB,
∵EF∥AB,
∴∠A+∠AEF=180°( _________ ).
∵AB∥CD( _________ ),EF∥AB,
∴EF∥CD( _________ 
 _________ (两直线平行,同旁内角互补)
∴∠A+∠AEF+∠CEF+∠C= _________ °(等式的性质)
即∠A+∠AEC+∠C= _________ °
∵∠AEC=90°(已知)
∴∠A+∠C= _________ °(等式的性质).

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

已知一次函数y=kx+b的图象经过点A(0,-1),B(1,0),求这个一次函数的表达式.

为了了解某班同学的身高情况,随机抽取其中10位同学,量得他们的身高(单位:cm)如下 :
148,150,150,151,152,152,152,153,154,158
这组数据的众数是多少?中位数是多少?平均数是多少?

解方程组

如图1,在Rt△ABC中,∠C=90º,AC=4cm,BC=3cm,点P由点B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由点A出发沿AC方向向点C匀速运动,速度为2cm/s;连结PQ。若设运动时间为t(s)(0<t<2),解答下列问题:

(1)当t为何值时?PQ//BC?
(2)设△APQ的面积为y(cm2),求y与t之间的函数关系?
(3)是否存在某一时刻t,使线段PQ恰好把△ABC的周长和面积同时平分?若存在求出此时t的值;若不存在,说明理由。
(4)如图2,连结PC,并把△PQC沿AC翻折,得到四边形PQP'C,那么是否存在某一时刻t,使四边形PQP'C为菱形?若存在求出此时t的值;若不存在,说明理由。

如图,△AEF中,∠EAF=45°,AG⊥EF于点G,现将△AEG沿AE折叠得到△AEB,将△AFG沿AF折叠得到△AFD,延长BE和DF相交于点C.

(1)求证:四边形ABCD是正方形;
(2)连接BD分别交AE、AF于点M、N,将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH,试判断线段MN、ND、DH之间的数量关系,并说明理由.
(3)若EG=4,GF=6,BM=3,求AG、MN的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号