抛物线与
轴交于点A,B,与y轴交于点C,其中点B的坐标为
.
(1)求抛物线对应的函数表达式;]
(2)将(1)中的抛物线沿对称轴向上平移,使其顶点M落在线段BC上,记该抛物线为G,求抛物线G所对应的函数表达式;
(3)将线段BC平移得到线段(B的对应点为
,C的对应点为
),使其经过(2)中所得抛物线G的顶点M,且与抛物线G另有一个交点N,求点
到直线
的距离
的取值范围.
如图,在□ 中,E,F分别为边AB,CD的中点,连接DE,BF,BD.
(1)求证:△ADE≌△CBF.
(2)若AD⊥BD,则四边形BFDE是什么特殊四边形?请证明你的结论.
图①、图②均为的正方形网格,点
在格点(小
正方形的顶点)上.(1)在图①中确定格点
,并画出一个以
为顶点的四边形,使其为轴对称图形;(画出两个符合条件的四边形)
(2)在图②中确定格点
,并画出一个以
为顶点的四边形,使其为中心对称图形.(画出两个符合条件的四边形)
已知与
成正比例,且当
时,
;
(1)写出
与
之间的函数关系式;
(2)当
时,求
的值;
(1)计算:
(2)求x的值:
已知直角坐标系中菱形ABCD的位置如图,C,D两点的坐标分别为(4,0),(0,3).现有两动点P,Q分别从A,C同时出发,点P沿线段AD向终点D运动,点Q沿折线CBA向终点A运动,设运动时间为t秒.(1)填空:菱形ABCD的边长是▲、面积是▲、高BE的长是▲;
(2)探究下列问题:
若点P的速度为每秒1个单位,点Q的速度为每秒2个单位.当点Q在线段BA上时
②△APQ的面积S关于t的函数关系式,以及S的最大值; (3)在运动过程中是否存在某一时刻使得△APQ为等腰三角形,若存在求出t的值;若不存在说明理由.