无论k取任何实数,对于直线都会经过一个固定的点
,我们就称直线
恒过定点
.
(1)无论取任何实数,抛物线
恒过定点
,直接写出定点A的坐标;
(2)已知△ABC的一个顶点是(1)中的定点,且∠B,∠C的角平分线分别是y轴和直线
,求边BC所在直线的表达式;
(3)求△ABC内切圆的半径.
已知:如图,在矩形ABCD中,AF=BE.求证:DE=CF;
先化简再求值:其中a=3
计算:
已知:抛物线与
轴交于A(1,0)和B(
,0)点,与
轴交于C点
(1)求出抛物线的解析式;
(2)设抛物线对称轴与轴交于M点,在对称轴上是否存在P点,使
为等腰三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;
(3)若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求此时点E 的坐标.
已知:在梯形中,
点
是
的中点,
是正三角形.动点P、Q分别在线段
和
上运动,且∠MPQ=60°保持不变.
(1)求证:△BMP∽△CPQ
(2)设PC=,MQ=
求
与
的函数关系式;
(3)在(2)中,当取最小值时,判断
的形状,并说明理由.