如图,正方形ABCD的边长为6,E是边BC上的一点,△ABE经过旋转后得到△ADF.
(1)旋转中心是点 ;旋转角最少是 度;
(2)求四边形AECF的面积;
(3)如果点G在边CD上,且GAE=450,
①试判断GE、BE、DG之间有什么样的数量关系?并说明理由。
②若BE=2,求DG的长。
新华商场销售某种冰箱,每台进价为2500元,市场调研表明;当销售价定为2900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价应为多少元?
. 如图,已知点E是矩形ABCD的边CD上一点,BF⊥AE于点F,
求证:△ABF∽△EAD.
辨析纠错.
已知:如图,在△ABC中,AD是∠BAC的平分线,DE∥AC,DF∥AB.
求证:四边形AEDF是菱形.对于这道题,
小明是这样证明的.
证明:∵AD平分∠BAC,∴∠1=∠2(角平分线的定义).
∵DE∥AC,∴∠2=∠3(两直线平行,内错角相等).
∴∠1=∠3(等量代换).
∴AE=DE(等角对等边).同理可证:AF=DF.
∴ 四边形AEDF是菱形(菱形定义).
老师说小明的证明过程有错误,你能看出来吗?
(1)请你帮小明指出他错在哪里.
(2)请你帮小明做出正确的解答.
如下图,路灯下,一墙墩(用线段AB表示)的影子是BC,小明(用线段DE表示)的影子是EF,在M处有一颗大树,它的影子是MN。
(1)试确定路灯的位置(用点P表示)。
(2)在图中画出表示大树高的线段。
(3)若小明的眼睛近似地看成是点D,试画图分析小明能否看见大树。
画出下面实物的三视图: