如图,点C是以AB为直径的圆O上一点,直线AC与过点B的切线相交于点D,D点E是BD的中点,直线CE交直线AB与点.
(1)求证:CF是⊙O的切线;
(2)若ED=,tanF=
,求⊙O的半径.
如图,在 中, ,点 、 分别在 、 上, , 、 相交于点 .
(1)求证: ;
(2)求证: .
如图,在平面直角坐标系 中,直线 分别交 轴、 轴于 , 两点,经过 , 两点的抛物线 与 轴的正半轴相交于点 .
(1)求抛物线的解析式;
(2)若 为线段 上一点, ,求 的长;
(3)在(2)的条件下,设 是 轴上一点,试问:抛物线上是否存在点 ,使得以 , , , 为顶点的四边形为平行四边形?若存在,求出点 的坐标;若不存在,请说明理由.
如图, 中, ,将 绕点 顺时针旋转得到 ,点 落在线段 上,连接 .
(1)求证: 平分 ;
(2)试判断 与 的位置关系,并说明理由;
(3)若 ,求 的值.
某商品的进价为每件40元,在销售过程中发现,每周的销售量 (件 与销售单价 (元 之间的关系可以近似看作一次函数 ,且当售价定为50元 件时,每周销售30件,当售价定为70元 件时,每周销售10件.
(1)求 , 的值;
(2)求销售该商品每周的利润 (元 与销售单价 (元 之间的函数解析式,并求出销售该商品每周可获得的最大利润.
如图, 是 的直径, 为 上一点, 和过点 的切线互相垂直,垂足为 .
(1)求证: ;
(2)若 , ,求 的长.