已知圆过点
,
,并且直线
平分圆的面积.
(1)求圆的方程;
(2)若过点,且斜率为
的直线
与圆
有两个不同的公共点
.
①求实数的取值范围; ②若
,求
的值.
已知曲线C的极坐标方程为=2,以极点为原点,极轴为x轴的正半轴建立直角坐标系,P是曲线C上的动点,点A(2,0),M是线段AP的中点。
(1)求点M轨迹的直角坐标方程;
(2)求证点M到点E(,0)、F(3、0)的距离之比是常数。
如图,AB是⊙O的一条直径,过A作⊙O的切线,在切线上取一点C,使AC=AB,连接OC,与⊙O交于点D,BD的延长线与AC交于点E,求证:
(1)∠CDE = ∠DAE
(2)AE = CD
已知函数f(x)=ex-e-x(xR)
(1)求证:当x≥0时,;
(2)试讨论函数H(x)=f(x)-ax(xR)的零点个数.
已知直线x+y-1=0经过椭圆C: 的顶点和焦点F.
(1)求此椭圆的标准方程;
(2)斜率为k,且过点F的动直线与椭圆C交于A,B两点,点A关于x轴的对称点为D,求证:直线BD过顶点.
某市共有100万居民的月收入是通过“工资薪金所得”得到的,如图是抽样调查后得到的工资薪金所得X的频率分布直方图。工资薪金个人所得税税率表如表所示。表中“全月应纳税所得额”是指“工资薪金所得”减去3500元所超出的部分(3500元为个税起征点,不到3500元不缴税)。
工资个税的计算公式为:“应纳税额”=“全月应纳税所得额”乘以“适用税率”减去“速算扣除数”。
全月应纳税所得额 |
适用税率(%) |
速算扣除数 |
不超过1500元 |
3 |
0 |
超过1500元至4500元 |
10 |
105 |
超过4500元至9000元 |
20 |
555 |
… |
… |
… |
例如:某人某月“工资薪金所得”为5500元,则“全月应纳税所得额”为5500-3500=2000元,应纳税额为200010%-105=95(元)
在直方图的工资薪金所得分组中,以各组的区间中点值代表该组的各个值,工资薪金所得落入该区间的频率作为x取该区间中点值的概率
(1)试估计该市居民每月在工资薪金个人所得税上缴纳的总税款;
(2)设该市居民每月从工资薪金所得交完税后,剩余的为其月可支配额y(元),试求该市居民月可支配额y的数学期望。