已知点A(-1,0),B(1,-1)和抛物线.,O为坐标原点,过点A的动直线l交抛物线C于M、P,直线MB交抛物线C于另一点Q,如图.
(1)证明: 为定值;
(2)若△POM的面积为,求向量
与
的夹角;
(3)证明直线PQ恒过一个定点.
已知函数,
。(1)求实数
的值;(2)若
,求
的值;(3)求
在
上的值域。
设,不等式
的解集是
。(1)求
的值;(2)求函数
在
上的最大值和最小值。
已知函数且
。(1)求函数
的定义域;(2)若函数
的最小值为
,求实数
的值。
已知数列满足:
,点
在直线
上,数列
满足:
且
.
(I)求的通项公式;
(II)求证:数列为等比数列;
(3)求的通项公式;并探求数列
的前
和的最小值
某新设备M在第1年可以生产价值120万元的产品,在使用过程中,由于设备老化及维修原因使得M的生产能力逐年减少,从第2年到第6年,每年M生产的产品价值比上年减少10万元;从第7年开始,每年M生产的产品价值为上年的75%.
(I)求第n年M生产的产品价值的表达式;
(II)该设备M从购买回来后马上使用,则连续正常使用10年可以生产多少价值的产品?