(1)求的解析式(2)满足什么条件时,函数在区间上单调递增?
用反证法证明:若三个互不相等的正数,成等差数列,求证:不可能成等比数列。
计算: (1)、(2)、 (3)、
已知函数R). (1)若,且在时有最小值,求的表达式; (2)若,且不等式对任意满足条件的实数恒成立,求常 数取值范围.
已知抛物线C:的焦点为F,直线交抛物线于、两点,是线段的中点,过作轴的垂线交抛物线于点. (1)若直线AB过焦点F,求的值; (2)是否存在实数,使是以为直角顶点的直角三角形?若存在,求出的值;若不存在,说明理由.
如图,在三棱锥中,和都是以为斜边的等腰直角三角形,若,是的中点 (1)证明:; (2)求与平面所成角的正弦值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号