某社区举办防控甲型H7N9流感知识有奖问答比赛,甲、乙、丙三人同时回答一道卫生知识题,三人回答正确与错误互不影响.已知甲回答这题正确的概率是,甲、丙两人都回答错误的概率是
,乙、丙两人都回答正确的概率是
.
(1)求乙、丙两人各自回答这道题正确的概率;
(2)用ξ表示回答该题正确的人数,求ξ的分布列和数学期望Eξ.
A、B是单位圆O上的动点,且A、B分别在第一、二象限,C是圆O与轴正半轴的交点, 为正三角形。记
(1)若A点的坐标为
,求
的值 (2)求
的取值范围。
已知椭圆C:=1(a>b>0)的离心率为
,以原点为圆点,椭圆的短半轴为半径的圆与直线x-y+
=0相切。
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连接PB交随圆C于另一点E,证明直线AE与x轴相交于定点Q.
已知函数数列
的前n项和为
,
,在曲线
(1)求数列{}的通项公式
;(II)数列{
}首项b1=1,前n项和Tn,且
,求数列{
}通项公式bn.
如图所示,已知四棱锥S—ABCD的底面ABCD是矩形,M、N分别是CD、SC的中点,SA⊥底面ABCD,SA=AD=1,AB=.
(1)求证:MN⊥平面ABN;(2)求二面角A—BN—C的余弦值
在中,角
所对的边为
已知
.
(1)求值;(2)若
面积为
,且
,求
值.