游客
题文

某工厂某种产品的年产量为1000x件,其中x∈[20,100],需要投入的成本为C(x),当x∈[20,80]时,C(x)=x2﹣30x+500(万元);当x∈(80,100]时,C(x)=(万元).若每一件商品售价为(万元),通过市场分析,该厂生产的商品能全部售完.
(1)写出年利润L(x)(万元)关于x的函数解析式;
(2)年产量为多少件时,该厂在这一商品的生产中所获利润最大?

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

已知
(1)讨论的单调性;
(2)当时,若对于任意,都有,求的取值范围.

现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽查了50人,他们月收入的频数分布及对“楼市限购令”赞成人数如下表.

月收入(单位百元)
[15,25
[25,35
[35,45
[45,55
[55,65
[65,75
频数
5
10
15
10
5
5
赞成人数
4
8
12
5
2
1


(1)由以上统计数据填下面2乘2列联表并问是否有99%的把握认为“月收入以5500为分界点对“楼市限购令” 的态度有差异;


月收入不低于55百元的人数
月收入低于55百元的人数
合计
赞成



不赞成



合计




(2)若对月收入在[15,25) ,[25,35)的被调查人中各随机选取1人进行追踪调查,求选中的2人中不赞成“楼市限购令”人数至多1人的概率。
参考数据:

已知,函数
(1)当时,求的单调递增区间;
(2)若的极大值是,求的值.

已知函数,下列结论错误的是()

A.函数一定存在极大值和极小值
B.若函数上是增函数,则
C.函数的图像是中心对称图形
D.函数一定存在三个零点

已知函数f(x)=-x3+ax2+1(a∈R).
(1)若函数y=f(x)在区间上递增,在区间上递减,求a的值;
(2)当x∈[0,1]时,设函数y=f(x)图象上任意一点处的切线的倾斜角为θ,若给定常数a∈,求的取值范围;
(3)在(1)的条件下,是否存在实数m,使得函数g(x)=x4-5x3+(2-m)x2+1(m∈R)的图象与函数y=f(x)的图象恰有三个交点.若存在,求实数m的取值范围;若不存在,试说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号