下图1为人体内血糖调节的部分图解,图中a、b表示参与血糖调节的两种激素,图2表示a激素信息传递的一种机制。请据图回答:
(1)正常人空腹时的血糖浓度为 。
(2)a激素与b激素的作用关系表现为 ;a激素和b激素的作用结果都会反过来影响各自的分泌,这种调节方式称为 调节。
(3)产生b激素的细胞是 。
(4)图2体现了细胞膜的功能是 。
(5)若图3代表淋巴、血浆、组织液之间的物质交换关系,则代表组织液的是 ;若图3代表下丘脑、垂体、甲状腺之间的调节关系,则代表垂体的是 。
下图是植物细胞杂交过程示意图,请据图回答:
(1)植物体细胞杂交的第①步是去掉细胞壁,分离出有活力的原生质体。目前此步聚最常用的方法是酶解法,也就是在温和的条件下用等分解植物的细胞壁。
(2)②过程的发生,必须进行人工诱导。人工诱导原生质体融合的物理方法是:利用
等(至少写出两种)促使原生质体融合;化学方法是用等试剂作为诱导剂诱导融合。动物细胞融合与植物生质体融合的基本原理相同,诱导融合的方法类似,动物细胞的融合还常用到作为诱导剂。
(3)③表示融合后的原生质体再产生新的细胞壁,新细胞壁的产生与细胞内________(细胞器)有密切关系。
(4)在④⑤过程中,细胞分裂的主要方式是___________。
(5)植物体细胞杂交在育种工作中具有广泛的应用价值,其突出的优点是可以。目前,动物细胞融合技术最重要的用途是。
美籍华人钱永健、美国的沙尔菲和日本的下村修因在研究绿色荧光蛋白(GFP)等方面的突出贡献,获得2008年度诺贝尔化学奖。GFP会发出绿色荧光,该蛋白质在生物工程中有着广阔的应用前景。请据图回答相关问题:
(1)图中重组质粒的形成,需要用限制酶对目的基因和质粒进行剪切。如果限制酶Ⅰ的识别序列和切点(用“↓”表示)是—G↓GATCC—,限制酶Ⅱ的识别序列和切点是—↓GATC—;在质粒上有酶Ⅰ的一个切点,在目的基因的两侧各有一个酶Ⅱ的切点。质粒和目的基因经过上述两种不同的限制酶处理后,在DNA连接酶的作用下(填“能”或“不能”)连接成重组质粒,理由是。
(2)在②过程中对转基因体细胞进行筛选,比较简易的方法是通过设备检测被培养的细胞;绿色荧光蛋白在转基因体细胞的________中合成,写出这一过程中的遗传信息传递图解:_________________________________________。
(3)在③过程中培养重组细胞时,培养液中通常含有、氨基酸、无机盐、维生素和动物血清等。
(4)在核移植过程中,供体细胞一般要选用传代到________代以内的转基因体细胞,原因是__________________________________________________________________;乙兔提供的细胞应是________________________。
(5)钱永健通过工程技术,改变氨基酸排序,造出能吸收并发出不同颜色光的荧光蛋白,并能让它们发光更久、更强烈。
科研人员以酵母菌为受体细胞,通过转基因技术研究水稻某种病毒的蛋白P与水稻蛋白的相互作用。
(1)实验所用的缺陷型酵母菌不能合成组氨酸、色氨酸和亮氨酸,培养时在培养基中需添加上述氨基酸,为酵母菌细胞内________上合成________提供原料。
(2)将蛋白P基因与质粒K(具有色氨酸合成基因及BD蛋白合成基因)连接,构建重组质粒K。将重组质粒K导入缺陷型酵母菌,用不含________的培养基筛选转化的酵母菌获得菌落,从这些菌落中可筛选得到基因成功________BD-P蛋白的酵母菌A。
(3)为研究蛋白P能够和哪些水稻蛋白发生相互作用,科研人员提取水稻细胞的mRNA,在________酶作用下获得cDNA,再与质粒T(具有亮氨酸合成基因及AD蛋白合成基因)连接形成重组质粒T,构建水稻cDNA文库。
(4)在酵母菌细胞内,组氨酸合成基因的转录受到调控,如下图所示。若被测的水稻蛋白能与病毒蛋白P发生相互作用,BD、AD两个蛋白充分接近时,_________才能催化组氨酸合成基因转录。
(5)将酵母菌A分别接种到不含组氨酸和不含亮氨酸的培养基中,以确定转入重组质粒K后酵母菌A________。取水稻cDNA文库的多个重组质粒T分别转化到酵母菌A中,将转化产物接种在不含________的培养基中培养,获得了分散的多个单菌落。经检测这些酵母菌中含有4种水稻蛋白,表明这4种水稻蛋白能够________。
(6)研究发现,这4种水稻蛋白都是水稻不同代谢过程中的关键酶,推测该病毒引起水稻出现各种病症的原因之一可能是______。
为研究水稻D基因的功能,研究者将T-DNA插入到D基因中,致使该基因失活,失活后的基因记为d。现以野生植株和突变植株作为亲本进行杂交实验,统计母本植株的结实率,结果如下表所示。
杂交编号 |
亲本组合 |
结实数/授粉的小花数 |
结实率 |
① |
♀DD×♂dd |
16/158 |
10% |
② |
♀dd×♂DD |
77/154 |
50% |
③ |
♀DD×♂DD |
71/141 |
50% |
(1)表中数据表明,D基因失活使________配子育性降低。为确定配子育性降低是由于D基因失活造成的,可将________作为目的基因,与载体连接后,导入到________(填“野生”或“突变”)植株的幼芽经过________形成的愈伤组织中,最后观察转基因水稻配子育性是否得到恢复。
(2)用________观察并比较野生植株和突变植株的配子形成,发现D基因失活不影响二者的________分裂。
(3)进一步研究表明,配子育性降低是因为D基因失活直接导致配子本身受精能力下降。若让杂交①的F1给杂交②的F1授粉,预期结实率为________,所获得的F2植株的基因型及比例为________。
(4)为验证F2植株基因型及比例,研究者根据D基因、T-DNA的序列,设计了3种引物,如下图所示:
随机选取F2植株若干,提取各植株的总DNA,分别用引物“Ⅰ+Ⅲ”组合及“Ⅱ+Ⅲ”组合进行PCR,检测是否扩增(完整的T-DNA过大,不能完成PCR)。若________,则相应植株的基因型为Dd;同理可判断其他基因型,进而统计各基因型比例。
(5)研究表明D基因表达产物(D蛋白)含有WD40(氨基酸序列),而通常含有WD40的蛋白都定位在细胞核内。为探究D蛋白是否为核蛋白,研究者将D基因与黄色荧光蛋白基因融合;同时将已知的核蛋白基因与蓝色荧光蛋白基因融合。再将两种融合基因导入植物原生质体表达系统,如果________,则表明D蛋白是核蛋白。
为研究油菜素内酯(BR)在植物向性生长中对生长素(IAA)的作用,科研人员以拟南芥为材料进行了如下实验。
(1)BR作为植物激素,与IAA共同________植物的生长发育。
(2)科研人员在黑暗条件下用野生型和BR合成缺陷突变体拟南芥幼苗进行实验,三组幼苗均水平放置,其中一组野生型幼苗施加外源BR,另外两组不施加,测定0~14 h内三组幼苗胚轴和主根的弯曲度,结果如下图所示。
①上述实验均在黑暗条件下进行,目的是避免光照对________的影响。
②由实验结果可知,主根和胚轴弯曲的方向________。施加外源BR的野生型幼苗的胚轴、主根在________h时就可达到最大弯曲度,BR合成缺陷突变体的最大弯曲度形成的时间较其他两组________,说明________。
(3)IAA可引起G酶基因表达,G酶可催化无色底物生成蓝色产物。科研人员将转入G酶基因的野生型和BR合成缺陷突变体植株主根用含有无色底物的溶液浸泡一段时间后,观察到,野生型植株主根的蓝色产物分布于分生区和伸长区,而BR合成缺陷突变体植株主根的蓝色产物仅分布于________,说明BR影响IAA的分布,推测BR能够促进IAA的________。由于重力引起水平放置的幼苗主根中近地侧和远地侧IAA浓度不同,________侧细胞伸长较快,根向地生长。
(4)为验证上述推测,可进一步检测并比较野生型和BR合成缺陷突变体植株主根细胞中________(填“IAA合成基因”或“IAA极性运输载体基因”)的表达量,若检测结果是野生型植株主根细胞中该基因表达量________BR合成缺陷突变体,则支持上述推测。