根据某研究院公布的2009~2013年我国成年国民阅读调查报告的部分相关数据,绘制的统计图表如下:
年份 |
年人均阅读图书数量(本) |
2009 |
![]() |
2010 |
![]() |
2011 |
![]() |
2012 |
![]() |
2013 |
![]() |
根据以上信息解答下列问题:
(1)直接写出扇形统计图中的值;
(2)从2009到2013年,成年国民年人均阅读图书的数量每年增长的幅度近似相等,估算2014年成年国民年人均阅读图书的数量约为 本;
(3)2013年某小区倾向图书阅读的成年国民有990人,若该小区2014年与2013年成年国民的人数基本持平,估算2014年该小区成年国民阅读图书的总数量约为 本.
如图,在Rt△ABC中∠ABC=90°,BA=BC,P在△ABC的内部,且∠APB=135°,PA:PC=1:3,求PA:PB
设二次函数的图象为C1.二次函数
的图象与C1关于y轴对称.
(1)求二次函数的解析式;
(2)当≤0时,直接写出
的取值范围;
(3)设二次函数图象的顶点为点A,与y轴的交点为点B,一次函数
( k,m为常数,k≠0)的图象经过A,B两点,当
时,直接写出x的取值范围.
已知二次函数.
(1)若点与
在此二次函数的图象上,则
(填 “>”、“=”或“<”);
(2)如图,此二次函数的图象经过点,正方形ABCD的顶点C、D在x轴上, A、B恰好在二次函数的图象上,求图中阴影部分的面积之和.
如图,AB为⊙O的直径,射线AP交⊙O于C点,∠PCO的平分线交⊙O于D点,过点D作交AP于E点.
(1)求证:DE为⊙O的切线;
(2)若DE=3,AC=8,求直径AB的长.
如图,用长为20米的篱笆恰好围成一个扇形花坛,且扇形花坛的圆心角小于180°,设扇形花坛的半径为r米,面积为S平方米.(注:的近似值取3)
(1)求出S与r的函数关系式,并写出自变量的取值范围;
(2)当半径r为何值时,扇形花坛的面积最大,并求面积的最大值.