游客
题文

在菱形ABCD和正三角形BGF中,∠ABC=60°,P是DF的中点,连接PG、PC.
(1)如图1,当点G在BC边上时,易证:PG=PC.(不必证明)
(2)如图2,当点F在AB的延长线上时,线段PC、PG有怎样的数量关系,写出你的猜想,并给与证明;
(3)如图3,当点F在CB的延长线上时,线段PC、PG又有怎样的数量关系,写出你的猜想(不必证明).

科目 数学   题型 解答题   难度 较难
知识点: 三角形的五心 圆内接四边形的性质
登录免费查看答案和解析
相关试题

已知:直线交x轴于点A,交y轴于点B,点C为x轴上一点,AC=1,且OC<OA.抛物线经过点A、B、C.

(1)求该抛物线的表达式;
(2)点D的坐标为(-3,0),点P为线段AB上一点,当锐角∠PDO的正切值为时,求点P的坐标;
(3)在(2)的条件下,该抛物线上的一点E在x轴下方,当△ADE的面积等于四边形APCE的面积时,求点E的坐标.

已知:如图,在正方形ABCD中,点E、F分别在边BC和CD上,∠BAE=∠DAF.

(1)求证:BE=DF;
(2)联结AC交EF于点O,延长OC至点M,使OM= OA,联结EM、FM.求证:四边形AEMF是菱形.

某超市进了一批成本为6元/个的文具.调查后发现:这种文具每周的销售量y(个)与销售价x(元/个)之间的关系满足一次函数关系,如下表所示:

销售价x(元/个)
8
9.5
11
14
销售量y(个)
220
205
190
160

(1)求y与x之间的函数解析式(不必写出定义域);
(2)已知该超市这种文具每周的销售量不少于60个,若该超市某周销售这种文具(不考虑其它因素)的利润为800元,求该周每个文具的销售价.

如图,在△ABC中,AB=AC=10,,圆O经过点B、C,圆心O在△ABC的内部,且到点A的距离为2,求圆O的半径.

解方程组:

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号