如图,已知∠MON=90°,A是∠MON内部的一点,过点A作AB⊥ON,垂足为点B,AB=3厘米,OB=4厘米,动点E,F同时从O点出发,点E以1.5厘米/秒的速度沿ON方向运动,点F以2厘米/秒的速度沿OM方向运动,EF与OA交于点C,连接AE,当点E到达点B时,点F随之停止运动.设运动时间为t秒(t>0).
(1)当t=1秒时,△EOF与△ABO是否相似?请说明理由;
(2)在运动过程中,不论t取何值时,总有EF⊥OA.为什么?
(3)连接AF,在运动过程中,是否存在某一时刻t,使得S△AEF=S四边形ABOF?若存在,请求出此时t的值;若不存在,请说明理由.
在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、ED.
(1)求证:△BEC≌△DEC;
(2)延长BE交AD于F,当∠BED=120°时,求∠EFD的度数.
解下列方程:
已知a是最大的负整数,b是多项式的次数,c是单项式
的系数,且a、b、c分别是点A、B、C在数轴上对应的数.
(1)求a、b、c的值,并在数轴上标出点A、B、C.
(2)若动点P、Q同时从A、B出发沿数轴负方向运动,点P的速度是每秒个单位长度,点Q的速度是每秒
个单位长度,求运动几秒后,点Q可以追上点P?
(3)在数轴上找一点M,使点M到A、B、C三点的距离之和等于10,请直接写出所有点M对应的数.(不必说明理由)
有8筐白菜,以每筐25千克为标准重量,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:,
,
,
,
,
,
,
,
回答下列问题:
(1)这8筐白菜中最接近标准重量的这筐白菜重*千克;
(2)与标准重量比较,8筐白菜总计超过多少千克或不足多少千克?
(3)若白菜每千克售价2.6元,则出售这8筐白菜可卖多少元?
一种笔记本的单价是元,圆珠笔的单价是
元。小红买这种笔记本4本,买圆珠笔3支;小强买这种笔记本3本,买圆珠笔2支.
(1)买这些笔记本和圆珠笔,两人一共花费多少钱?
(2)请结合生活实际选取适当的,
值,计算两人的总花费。