某数学兴趣小组对线段上的动点问题进行探究,已知AB=8.
问题思考:
如图1,点P为线段AB上的一个动点,分别以AP、BP为边在同侧作正方形APDC与正方形PBFE.
(1)在点P运动时,这两个正方形面积之和是定值吗?如果时求出;若不是,求出这两个正方形面积之和的最小值.
(2)分别连接AD、DF、AF,AF交DP于点A,当点P运动时,在△APK、△ADK、△DFK中,是否存在两个面积始终相等的三角形?请说明理由.
问题拓展:
(3)如图2,以AB为边作正方形ABCD,动点P、Q在正方形ABCD的边上运动,且PQ=8.若点P从点A出发,沿A→B→C→D的线路,向D点运动,求点P从A到D的运动过程中,PQ的中点O所经过的路径的长。
(4)如图(3),在“问题思考”中,若点M、N是线段AB上的两点,且AM=BM=1,点G、H分别是边CD、EF的中点.请直接写出点P从M到N的运动过程中,GH的中点O所经过的路径的长及OM+OB的最小值.
工人小王生产甲、乙两种产品,生产产品件数与所用时间之间的关系如表:
(1)小王每生产一件甲种产品和每生产一件乙种产品分别需要多少分钟;
(2)小王每天工作8个小时,每月工作25天.如果小王四月份生产甲种产品件(
为正整数).
①用含的代数式表示小王四月份生产乙种产品的件数;
②已知每生产一件甲产品可得1.50元,每生产一件乙种产品可得2.80元,若小王四月份的工资不少于1500元,求的取值范围.
我们的数学教材中有一个“抢30的游戏”,现在改为“甲、乙二人抢20”的游戏.游戏规则是:甲先说“1”或“1、2”,乙接着甲的数往下说一个或两个数,然后又轮到甲再接着乙的数往下说一个或两个数,甲、乙反复轮流说,每次每人说一个或两个数都可以,但不能连续说三个数,也不能一个数也不说.谁先抢到20,谁就获胜.
(1)这个游戏公平吗?如果不公平,这是一个偏向谁的游戏?
(2)在此游戏中,要想抢到20,应抢到哪些数?
如图,如果平分
,
,
相等吗?请说明理由.
在3×3的正方形格点图中,有格点,请你画出格点
,使
与
关于某直线对称(在下面给出的图中画出4个不同的格点
).
如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(用直尺画图)
(1)画出格点(顶点均在格点上)关于直线
对称的
;
(2)在上画出点
,使
最小;
(3)在上画出点
,使
最小.