()如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.
(1)求n的值;
(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.
如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,若AC=FC.
(1)求证:AC是⊙O的切线:
(2)若BF=8,DF=,求⊙O的半径r.
某小区为了促进生活垃圾的分类处理,将生活垃圾分为:可回垃圾、厨余垃圾、其他垃圾三类,分别记为A,B,C:并且设置了相应的垃圾箱,依次记为a,b,c.
(1)若将三类垃圾随机投入三个垃圾箱,请你用树形图的方法求垃圾投放正确的概率:
(2)为了调查小区垃圾分类投放情况,现随机抽取了该小区三类垃圾箱中总重500kg生活垃圾,数据如下(单位:)
a |
b |
c |
|
A |
40 |
15 |
10 |
B |
60 |
250 |
40 |
C |
15 |
15 |
55 |
试估计“厨余垃圾”投放正确的概率.
已知关于x的方程x2+x+n=0有两个实数根﹣2,m.求m,n的值.
如图,AB=AE,∠1=∠2,∠C=∠D.
求证:△ABC≌△AED.
如图所示,在直角梯形ABCD中,AB为垂直于底边的腰,AD=1,BC=2,AB=3,点E为CD上异于C,D的一个动点,过点E作AB的垂线,垂足为F,△ADE,△AEB,△BCE的面积分别为S1,S2,S3.
(1)设AF=x,试用x表示S1与S3的乘积S1S3,并求S1S3的最大值;
(2)设=t,试用t表示EF的长;
(3)在(2)的条件下,当t为何值时,S22=4S1S3.