某联欢会上有一个有奖游戏,规则如下:有5张纸牌,背面都是喜羊羊头像,正面有2张是笑脸,其余3张是哭脸.现将5张纸牌洗匀后背面朝上摆放到桌上.
(1)小芳获得一次翻牌机会,她从中随机翻开一张纸牌.若翻到的纸牌是笑脸就有奖,小芳得奖的概率是多少?
(2)小明获得两次翻牌机会,他同时翻开两张纸牌.若翻到的纸牌中有笑脸就有奖,没有笑脸就没有奖.小明认为这样得奖的概率是(1)中小芳得奖概率的两倍,你赞同他的观点吗?请用树形图或列表法进行分析说明.
、 两地相距200千米,甲车从 地出发匀速开往 地,乙车同时从 地出发匀速开往 地,两车相遇时距 地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.
为了解某小区某月家庭用水量的情况,从该小区随机抽取部分家庭进行调查,以下是根据调查数据绘制的统计图表的一部分
分组 |
家庭用水量 吨 |
家庭数 户 |
|
|
4 |
|
|
13 |
|
|
|
|
|
|
|
|
6 |
|
|
3 |
根据以上信息,解答下列问题
(1)家庭用水量在 范围内的家庭有 户,在 范围内的家庭数占被调查家庭数的百分比是 ;
(2)本次调查的家庭数为 户,家庭用水量在 范围内的家庭数占被调查家庭数的百分比是 ;
(3)家庭用水量的中位数落在 组;
(4)若该小区共有200户家庭,请估计该月用水量不超过9.0吨的家庭数.
如图, 是 的对角线, , ,垂足分别为 、 ,求证: .
如图1,已知抛物线 与 轴从左至右交于 , 两点,与 轴交于点 .
(1)若抛物线过点 ,求抛物线的解析式;
(2)在第二象限内的抛物线上是否存在点 ,使得以 、 、 三点为顶点的三角形与 相似?若存在,求 的值;若不存在,请说明理由.
(3)如图2,在(1)的条件下,点 的坐标为 ,点 是抛物线上的点,在 轴上,从左至右有 、 两点,且 ,问 在 轴上移动到何处时,四边形 的周长最小?请直接写出符合条件的点 的坐标.
小颖在学习“两点之间线段最短”查阅资料时发现: 内总存在一点 与三个顶点的连线的夹角相等,此时该点到三个顶点的距离之和最小.
【特例】如图1,点 为等边 的中心,将 绕点 逆时针旋转 得到 ,从而有 ,连接 得到 ,同时 , ,即 、 、 、 四点共线,故 .在 中,另取一点 ,易知点 与三个顶点连线的夹角不相等,可证明 、 、 、 四点不共线,所以 ,即点 到三个顶点距离之和最小.
【探究】(1)如图2, 为 内一点, ,证明 的值最小;
【拓展】(2)如图3, 中, , , ,且点 为 内一点,求点 到三个顶点的距离之和的最小值.