为了解某班学生关注NBA是否与性别有关,对本班48人进行了问卷调查得到如下的列联表:
|
关注NBA |
不关注NBA |
合 计 |
男 生 |
|
6 |
|
女 生 |
10 |
|
|
合 计 |
|
|
48 |
已知在全班48人中随机抽取1人,抽到关注NBA的学生的概率为2/3
⑴请将上面列连表补充完整,并判断是否有的把握认为关注NBA与性别有关?
⑵现从女生中抽取2人进一步调查,设其中关注NBA的女生人数为X,求X的分布列与数学期望.
附:,其中
![]() |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
![]() |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
如图,为了计算北江岸边两景点与
的距离,由于地形的限制,需要在岸上选取
和
两个测量点,现测得
,
,
,
,
,求两景点
与
的距离(假设
在同一平面内,测量结果保留整数;参考数据:
)
已知为等差数列,其前
项和为
,
若……
,且
(Ⅰ)求值;(Ⅱ)若
,求
的值
求与直线平行且距离等于
的直线
方程.
(本小题满分14分)
如图,在长方体ABCD─A1B1C1D1中,E、P分别是BC、A1D1的中点,M、N分别是AE、CD1的中点,AD=AA1=a,AB=2a.
(1)求证:MN∥面ADD1A1;
(2)求二面角P─AE─D的大小;
(3)求三棱锥P─DEN的体积.
.如图:正三棱柱ABC—A1B1C1中,D是BC的中点,AA1=AB=1.
(1)求证:A1C//平面AB1D;
(2)求二面角B—AB1—D的大小;
(3)求点C到平面AB1D的距离.