(本小题满分14分)
如图,在长方体ABCD─A1B1C1D1中,E、P分别是BC、A1D1的中点,M、N分别是AE、CD1的中点,AD=AA1=a,AB=2a.
(1)求证:MN∥面ADD1A1;
(2)求二面角P─AE─D的大小;
(3)求三棱锥P─DEN的体积.
已知有如下等式:当
时,试猜想
的值,并用数学归纳法给予证明。
将4个编号为1,2,3,4的不同小球全部放入4个编号为1,2,3,4的4个不同盒子中,求:
(1)每盒至少一个球,有多少种放法?
(2)恰好有一个空盒,有多少种放法?
(3)每盒放一个球,并且恰好有一个球的编号与盒子的编号相同,有多少种放法?
(4)把已知中4个不同的小球换成四个完全相同的小球(无编号),其余条件不变,恰有一个空盒,有多少种放法?
已知复数,当实数m取何值时,复数
是:
(1)零;(2)纯虚数;(3)
已知函数f(x)=x2-alnx(a∈R).
(1)若a=2,求f(x)的单调区间和极值;
(2)求f(x)在[1,e]上的最小值.
已知f(x)=ax3+bx2+cx在区间[0,1]上是增函数,在区间
(-上是减函数,又
.
(1)求f(x)的解析式;
(2)若方程有三个不等实根,求m的取值范围.