已知定义在R上的函数f(x)对任意实数x、y恒有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,又f(1)=-.(1)求证:f(x)为奇函数; (2)求证:f(x)在R上是减函数;(3)求f(x)在[-3,6]上的最大值与最小值.
设a,b,c为正数,利用排序不等式证明a3+b3+c3≥3abc.
设a,b,c是正实数,求证:aabbcc≥(abc).
设a1,a2,…,an为正数,求证:++…++≥a1+a2+…+an.
若a1≤a2≤…≤an,而b1≥b2≥…≥bn或a1≥a2≥…≥an而b1≤b2≤…≤bn,证明:≤()•().当且仅当a1=a2=…=an或b1=b2=…=bn时等号成立.
设a1,a2,…,an为实数,证明:≤.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号