游客
题文

求两直线L1:4x-3y+1=0和L2:12x+5y+13=0夹角平分线方程

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

已知函数
(1)设,当m≥时,求g(x)在[]上的最大值;
(2)若上是单调减函数,求实数m的取值范围.

已知,点A(s,f(s)), B(t,f(t))
(I) 若,求函数的单调递增区间;
(II)若函数的导函数满足:当|x|≤1时,有||≤恒成立,求函数的解析表达式;
(III)若0<a<b, 函数处取得极值,且,证明:不可能垂直.

已知二次函数为常数);.若直线l1、l2与函数f(x)的图象以及l1,y轴与函数f(x)的图象所围成的封闭图形如阴影所示.
(Ⅰ)求a、b、c的值;
(Ⅱ)求阴影面积S关于t的函数S(t)的解析式;
(Ⅲ)若问是否存在实数m,使得y=f(x)的图象与y=g(x)的图象有且只有两个不同的交点?若存在,求出m的值;若不存在,说明理由.

已知函数,函数.
(1)当时,求函数f(x)的最小值;
(2)设函数h(x)=(1-x)f(x)+16,试根据m的取值分析函数h(x)的图象与函数g(x)的图象交点的个数.

设函数
(1)求函数f(x)的单调区间,并求函数f(x)的极大值和极小值;
(2)当x∈[a+1, a+2]时,不等,求a的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号