某花店经营部每天的房租,人员工资等固定成本为150元,每盆花进价5元,销售单价与日均销售量的关系如下表:
| 销售单价/元 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
| 日均销量/盆 |
500 |
460 |
420 |
380 |
340 |
300 |
260 |
请根据数据分析,这个经营部怎样定价才能获得最大利润.
(14 分)如图(1)是一正方体的表面展开图,MN 和PB 是两条面对角线,请在图(2)的正方体中将MN 和PB 画出来,并就这个正方体解决下面问题。
(1)求证:MN//平面PBD;
(2)求证:AQ⊥平面PBD;
(3)求二面角P—DB—M 的大小.
(14 分)已知函数
的最大值为1.
(1)求常数a 的值;
(2)求
的单调递增区间;
(3)求
≥ 0 成立的x 的取值集合.
已知椭圆
(a>b>0)的离心率
,过点A(0,-b)和B(a,0)的直线与原点的距离为
.
(1)求椭圆的方程.
(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点.问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.
双曲线
(a>0,b>0)满足如下条件:(1) ab=
;(2)过右焦点F的直线l的斜率为
,交y轴于点P,线段PF交双曲线于点Q,且|PQ|:|QF|=2:1,求双曲线的方程.
已知椭圆
,P为该椭圆上一点.
(1)若P到左焦点的距离为3,求到右准线的距离;
(2)如果F1为左焦点,F2为右焦点,并且
,求
的值