如图,已知离心率为的椭圆
过点M(2,1),O为坐标原点,平行于OM的直线
交椭圆C于不同的两点A、B.
(1)求椭圆C的方程.
(2)证明:直线MA、MB与x轴围成一个等腰三角形.
(本小题满分14分)
据环保部门测定,某处的污染指数与附近污染源的强度成正比,与到污染源距离的平方成反比,比例常数为.现已知相距18
的A,B两家化工厂(污染源)的污染强度分别
为
,它们连线上任意一点C处的污染指数
等于两化工厂对该处的污染指数之和.设
(
).
(1)试将表示为
的函数;
(2)若,且
时,
取得最小值,试求
的值.
(本小题满分14分)
如图,在四棱锥中,底面
为矩形,平面
⊥平面
,
,
,
为
的中点,
求证:
(1)∥平面
;
(2)平面平面
.
(本小题满分14分)
已知函数.
(1)求的值;
(2)求的最大值及相应
的值.
选修4—5:不等式选讲
已知函数
(1)解关于的不等式
;
(2)若函数的图象恒在函数
图象的上方,求
的取值范围。
选修4—4:坐标系与参数方程
以直角坐标系的原点为极点,
轴的正半轴为极轴,已知点
的直角坐标为
,点
的极坐标为
,若直线
过点
,且倾斜角为
,圆
以
为圆心、
为半径。
(1)求直线的参数方程和圆
的极坐标方程;
(2)试判定直线和圆
的位置关系。