已知函数的图象在点(1,
)处的切线方程为
。
(1)用表示出
;
(2)若在[1,+∞)上恒成立,求
的取值范围.
(本小题满分14分)
如图所示的多面体,它的正视图为直角三角形,侧视图为正三角形,俯视图为正方形(尺寸如图所示),E为VB的中点.
(1)求证:VD∥平面EAC;
(2)求二面角A—VB—D的余弦值.
(本小题满分14分)(1)一个圆与轴相切,圆心在直线
上,且被直线
所截得的弦长为
,求此圆方程。
(2)已知圆,直线
,求与圆
相切,且与直线
垂直的直线方程。
(本小题满分14分)
在中,角
的对边分别为
,
,
,
的面积为
.
(Ⅰ)求的值;
(Ⅱ)求的值.
(本题满分14分) 已知是方程
的两个不等实根,函数
的定义域为
.
⑴当时,求函数
的值域;
⑵证明:函数在其定义域
上是增函数;
⑶在(1)的条件下,设函数,
若对任意的,总存在
,使得
成立,
求实数的取值范围.
(本小题满分15分) 已知动圆过定点
,且与直线
相切,椭圆
的对称轴为坐标轴,一个焦点是
,点
在椭圆
上.
(Ⅰ)求动圆圆心的轨迹
的方程及其椭圆
的方程;
(Ⅱ)若动直线与轨迹
在
处的切线平行,且直线
与椭圆
交于
两点,问:是否存在着这样的直线
使得
的面积等于
?如果存在,请求出直线
的方程;如果不存在,请说明理由.