某网站体育版块足球栏目组发起了“射手的连续进球与射手在场上的区域位置有关系”的调查活动,在所有参与调查的人中,持“有关系”“无关系”“不知道”态度的人数如表所示:
|
有关系 |
无关系 |
不知道 |
40岁以下 |
800 |
450 |
200 |
40岁以上(含40岁) |
100 |
150 |
300 |
(1)在所有参与调查的人中,用分层抽样的方法抽取n个人,已知从持有关系态度的人中抽取45人,求n的值.
(2)在持“不知道”态度的人中,用分层抽样的方法抽取10人看作一个总体.①从这10人中选取3人,求至少一人在40岁以下的概率;②从这10人中人选取3人,若设40岁以下的人数为X,求X的分布列和数学期望.
如图,在直四棱柱中,底面
为平行四边形,且
,
,
,
为
的中点.
(Ⅰ) 证明:∥平面
;
(Ⅱ)求直线与平面
所成角的正弦值.
已知锐角中内角
、
、
的对边分别为
、
、
,
,且
.
(Ⅰ)求角的值;
(Ⅱ)设函数,
图象上相邻两最高点间的距离为
,求
的取值范围
已知定点,动点
是圆
(
为圆心)上一点,线段
的垂直平分线交
于点
.
(I)求动点的轨迹方程;
(II)是否存在过点的直线
交
点的轨迹于点
,且满足
(
为原点).若存在,求直线
的方程;若不存在,请说明理由.
已知数列中,
求通项公式
求前n项和
设数列,
,
,。。。。。
,。。。。。(a,b为大于零的常数,且a
)
(1) 求证数列为等比数列。
(2)若数列又为等差数列,求b的值。