下图是淮北市6月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择6月1日至6月15日中的某一天到达该市,并停留2天.(1)求此人到达当日空气重度污染的概率;(2)若设是此人停留期间空气质量优良的天数,请分别求当x=0时,x=1时和x=3时的概率值。(3)由图判断从哪天开始淮北市连续三天的空气质量指数方差最大?(结论不要求证明)
已知集合A={x| }, B="{x|" } 求;
(本小题满分14分) 已知函数,且. (1)求a的值; (2)判断的奇偶性,并加以证明; (3)判断函数在[2,+)上的单调性,并加以证明.
(本小题满分12分) 已知是定义在上的偶函数,当时, (1)求 (2)求函数的解析式; (3)求时,的值域
(本小题满分12分) 已知函数的图象过点(0,-2),(2,0) (1)求与的值; (2)求时,的最大值与最小值.
(本小题满分10分) 如图,用长为1的铁丝弯成下部为矩形,上部为半圆形的框架,若半圆半径为x,求此框架围成的面积y与x的函数式y="f" (x),并求出定义域。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号