下图是淮北市6月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择6月1日至6月15日中的某一天到达该市,并停留2天.
(1)求此人到达当日空气重度污染的概率;
(2)若设是此人停留期间空气质量优良的天数,请分别求当x=0时,x=1时和x=3时的概率值。
(3)由图判断从哪天开始淮北市连续三天的空气质量指数方差最大?(结论不要求证明)
(本小题满分l2分)已知函数(
).
(Ⅰ)求函数的最小正周期及单调递增区间;
(Ⅱ) 内角
的对边长分别为
,若
且
试求角B和角C.
(本小题满分12分)某投资人打算投资甲、乙两个项目. 根据预测,甲、乙项目可能的最大盈利率分别为100﹪和50﹪,可能的最大亏损分别为30﹪和10﹪. 投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元. 问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?
(本小题满分12分)在中,角
所对的边分别为
且满足
(I)求角的大小;
(Ⅱ)求的最大值,并求取得最大值时角
的大小.
(本小题满分10分)若,求:函数
的最大值.
(本小题满分14分)
已知函数.
(1)讨论函数在定义域内的极值点的个数;
(2)若函数在
处取得极值,对
,
恒成立,求实数
的取值范围;
(3)当且
时,试比较
的大小.