如图所示,左侧装置内存在着匀强磁场和方向竖直向下的匀强电场,装置上、下两极板间电势差为U,间距为L;右侧为“台形”匀强磁场区域ACDH,其中,AH//CD,AH=4L。一束电荷量大小为q、质量不等的带电粒子 (不计重力、可视为质点),从狭缝S1射人左侧装置中恰能沿水平直线运动并从狭缝S2射出,接着粒子垂直于AH、由AH的中点M射人“台形”区域,最后全部从边界AC射出。若两个区域的磁场方向均水平(垂直于纸面向里)、磁感应强度大小均为B,“台形”宽度MN=L,忽略电场、磁场的边缘效应及粒子间的相互作用。
(1)判定这束粒子所带电荷的种类,并求出粒子速度的大小;
(2)求出这束粒子可能的质量最小值和最大值;
(3)求出(2)问中偏转角度最大的粒子在“台形”区域中运动的时间。
在竖直方向的磁场中,有一个共有100匝的闭合矩形线圈水平放置,总电阻为10Ω、,在0.02s时间内,穿过线圈的磁通量从零均匀增加到6.4×10-4Wb,求:
(1)磁通量的变化量
(2)线圈产生的总感应电动势E
(3)线圈中的感应电流大小
如图所示为一真空示波管,电子从灯丝K发出(初速度不计),经灯丝与A板间的加速电压U1加速,从A板中心孔沿中心线kO射出,然后进入两块平行金属板M、N形成的偏转电场中(偏转电场可视为匀强电场),电子进入M、N间电场时的速度与电场方向垂直,电子经过电场后打在荧光屏上的P点。已知加速电压为U1,M、N两板间的电压为U2,两板间的距离为d,板长为L1,板右端到荧光屏的距离为L2,电子的质量为m,电荷量为e。
求:
(1)电子穿过A板时的速度大小;
(2)电子从偏转电场射出时的侧移量;
(3)P点到O点的距离。
一台直流电动机的额定电压为U=110V,电动机线圈的电阻R=0.5Ω,正常工作时通过的电流I=2A,若电动机正常运转1 min.求:
(1)电流所做的功;
(2)电动机线圈上产生的热量;
(3)电动机输出的机械能
如图所示,R1=5Ω,R2=9Ω。当开关S断开时,电流表的示数为I=0.2A当开关S闭合时,电流表的示数为
=0.3A。(电流表内阻不计)
求:电源的电动势和内阻.
(12分)如图所示,有一个可视为质点的质量为m=1 kg的小物块,从光滑平台上的A点以v0=2 m/s的初速度水平抛出,到达C点时,恰好沿C点的切线方向进入固定在水平地面上的光滑圆弧轨道,最后小物块滑上紧靠轨道末端D点的质量为M=3 kg的长木板.已知木板上表面与圆弧轨道末端切线相平,木板下表面与水平地面之间光滑,小物块与长木板间的动摩擦因数μ=0.3,圆弧轨道的半径为R=0.4 m,C点和圆弧的圆心连线与竖直方向的夹角θ=60°,不计空气阻力,g取10 m/s2.求:
(1)小球到达C点时的速度
(2)小物块刚要到达圆弧轨道末端D点时对轨道的压力;
(3)要使小物块不滑出长木板,木板的长度L至少多大?