两足够长的平行金属导轨间的距离为L,导轨光滑且电阻不计,导轨所在的平面与水平面夹角为θ.在导轨所在平面内,分布磁感应强度为B、方向垂直于导轨所在平面的匀强磁场.把一个质量为m的导体棒ab放在金属导轨上,在外力作用下保持静止,导体棒与金属导轨垂直、且接触良好,导体棒与金属导轨接触的两点间的电阻为R1.完成下列问题:
(1) 如图甲,金属导轨的一端接一个内阻为r的直流电源。撤去外力后导体棒仍能静止.求直流电源电动势;
(2) 如图乙,金属导轨的一端接一个阻值为R2的定值电阻,撤去外力让导体棒由静止开始下滑.在加速下滑的过程中,当导体棒的速度达到v时,求此时导体棒的加速度;
(3) 求(2)问中导体棒所能达到的最大速度。
如图所示,一固定的足够长的粗糙斜面与水平面夹角.一个质量
的小物体(可视为质点),在F=10 N的沿斜面向上的拉力作用下,由静止开始沿斜面向上运动.已知斜面与物体间的动摩擦因数
,取
.试求:
(1)物体在拉力F作用下运动的加速度;
(2)若力F作用1.2 s后撤去,物体在上滑过程中距出发点的最大距离s;
如图所示,质量均为m的小车和木箱紧挨着静止在光滑的水平冰面上,质量为2m的小孩站在小车上用力向右迅速推出木箱,木箱相对于冰面运动的速度为v,木箱运动到右侧墙壁时与竖直墙壁发生弹性碰撞,反弹后能被小孩接住,求:
①小孩接住箱子后共同速度的大小.
②若小孩接住箱子后再次以相对于冰面的速度v将木箱向右推出,木箱仍与竖直墙壁发生弹性碰撞,判断小孩能否再次接住木箱.
如图所示,光滑的定滑轮上绕有轻质柔软细线,线的一端系一质量为3m的重物,另一端系一质量为m、电阻为r的金属杆。在竖直平面内有间距为L的足够长的平行金属导轨PQ、EF,在QF之间连接有阻值为R的电阻,其余电阻不计,磁感应强度为B0的匀强磁场与导轨平面垂直,开始时金属杆置于导轨下端QF处,将重物由静止释放,当重物下降h时恰好达到稳定速度而匀速下降。运动过程中金属杆始终与导轨垂直且接触良好,(忽略所有摩擦,重力加速度为g),求:
(1)电阻R中的感应电流方向;
(2)重物匀速下降的速度v;
(3)重物从释放到下降h的过程中,电阻R中产生的焦耳热QR;
(4)若将重物下降h时的时刻记作t=0,速度记为v0,从此时刻
起,磁感应强度逐渐减小,若此后金属杆中恰好不产生感应电流,则磁感应强度B怎样随时间t变化(写出B与t的关系式)
如图甲所示,一半径R=1m、圆心角等于143°的竖直圆弧形光滑轨道,与斜面相切于B处,圆弧轨道的最高点为M,斜面倾角θ=370,t=0时刻有一物块沿斜面上滑,其在斜面上运动的速度变化规律如图乙所示。若物块恰能到达M点,(取g=10m/s2,sin370=0.6,cos370=0.8),求:
(1)物块经过B点时的速度;
(2)物块与斜面间的动摩擦因数;
(3)AB间的距离。
如图所示,一个质量为m,带电量为q的正离子,从D点以某一初速度v0垂直进入匀强磁场。磁场方向垂直纸面向内,磁感应强度为B。离子的初速度方向在纸面内,与直线AB的夹角为60°。结果粒子正好穿过AB的垂线上离A点距离为L的小孔C,垂直AC的方向进入AC右边的匀强电场中。电场的方向与AC平行。离子最后打在AB直线上的B点。B到A的距离为2L。不计离子重力,离子运动轨迹始终在纸面内,求:
(1)粒子从D点入射的速度v0的大小;
(2)匀强电场的电场强度E的大小。