游客
题文

在平面直角坐标系中,二次函数的图像与轴交于点A,B(点B在点A的左侧),与轴交于点C,过动点H(0, )作平行于轴的直线,直线与二次函数的图像相交于点D,E.
(1)写出点A,点B的坐标;
(2)若,以DE为直径作⊙Q,当⊙Q与轴相切时,求的值;
(3)直线上是否存在一点F,使得△ACF是等腰直角三角形?若存在,求的值;若不存在,请说明理由.

科目 数学   题型 解答题   难度 困难
知识点: 圆幂定理 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

如图,一艘核潜艇在海面下500米点处测得俯角为正前方的海底有黑匣子信号发出,继续在同一深度直线航行4000米后再次在点处测得俯角为正前方的海底有黑匣子信号发出,求海底黑匣子点处距离海面的深度?(精确到米,参考数据:

(1)计算:
(2)解方程组

如图,圆B切y轴于原点O,过定点A(-,0)作圆B的切线交圆于点P,已知tan∠PAB=,抛物线C经过A、P两点。

(1)求圆B的半径.
(2)若抛物线C经过点B,求其解析式.
(3)设抛物线C交y轴于点M,若三角形APM为直角三角形,求点M的坐标.

如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD的E点上,BG=10.
(1)当折痕的另一端F在AB边上时,如图(1).求△EFG的面积.

(2)当折痕的另一端F在AD边上时,如图(2).证明四边形BGEF为菱形,并求出折痕GF的长.

一家化工厂原来每月利润为120万元,从今年1月起安装使用回收净化设备(安装时间不计),一方面改善了环境,另一方面大大降低原料成本.据测算,使用回收净化设备后的1至x月(1≤x≤12)的利润的月平均值w(万元)满足w=10x+90,第二年的月利润稳定在第1年的第12个月的水平。
(1)设使用回收净化设备后的1至x月(1≤x≤12)的利润和为y,写出y关于x的函数关系式,并求前几个月的利润和等于700万元?
(2)当x为何值时,使用回收净化设备后的1至x月的利润和与不安装回收净化设备时x个月的利润和相等?
(3)求使用回收净化设备后两年的利润总和。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号