(本小题满分12分)泉城济南为增强市民的节水意识,面向全市征召宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组,第2组
,第3组
,第4组
,第5组
,得到的频率分布直方图如图所示.
(Ⅰ)若从第组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,应从第
组各抽取多少名志愿者?
(Ⅱ)在(Ⅰ)的条件下,决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.
选修4-5:不等式选讲(本小题满分7分)
已知,不等式
的解集为
.
(1)求;
(2)当时,证明:
.
选修4-4:极坐标与参数方程(本小题满分7分)
在直角坐标系中,以原点
为极点,以
轴正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
,曲线
的参数方程为
.
(1)求曲线的直角坐标方程与曲线
的普通方程;
(2)试判断曲线与
是否存在两个交点?若存在,求出两交点间的距离;若不存在,说明理由.
选修4-2:矩阵与变换(本小题满分7分)已知二阶矩阵有特征值λ1=4及属于特征值4的一个特征向量
并有特征值
及属于特征值-1的一个特征向量
,
(Ⅰ)求矩阵;(Ⅱ )求
.
(本小题满分14分)已知函数,其中a为实数.
(1)求g(x)的极值;
(2)设a<0,若对任意的,
恒成立,求a的最小值.